File size: 2,897 Bytes
0ee6042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210d258
0ee6042
210d258
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Transformation spoken text to written text

![Model](https://raw.githubusercontent.com/nguyenvulebinh/spoken-norm/main/spoken_norm_model.svg)

```python
import torch
import model_handling
from data_handling import DataCollatorForNormSeq2Seq
from model_handling import EncoderDecoderSpokenNorm
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
```

# Init tokenizer and model


```python
tokenizer = model_handling.init_tokenizer()
model = EncoderDecoderSpokenNorm.from_pretrained('nguyenvulebinh/spoken-norm', cache_dir=model_handling.cache_dir)
data_collator = DataCollatorForNormSeq2Seq(tokenizer)
```

# Infer sample


```python
bias_list = ['scotland', 'covid', 'delta', 'beta']
input_str = 'ngày hai tám tháng tư cô vít bùng phát ở sờ cốt lờn chiếm tám mươi phần trăm là biến chủng đen ta và bê ta'
```


```python
inputs = tokenizer([input_str])
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
if len(bias_list) > 0:
    bias = data_collator.encode_list_string(bias_list)
    bias_input_ids = bias['input_ids']
    bias_attention_mask = bias['attention_mask']
else:
    bias_input_ids = None
    bias_attention_mask = None

inputs = {
    "input_ids": torch.tensor(input_ids),
    "attention_mask": torch.tensor(attention_mask),
    "bias_input_ids": bias_input_ids,
    "bias_attention_mask": bias_attention_mask,
}
```

## Format input text **with** bias phrases


```python
outputs = model.generate(**inputs, output_attentions=True, num_beams=1, num_return_sequences=1)

for output in outputs.cpu().detach().numpy().tolist():
    # print('\n', tokenizer.decode(output, skip_special_tokens=True).split(), '\n')
    print(tokenizer.sp_model.DecodePieces(tokenizer.decode(output, skip_special_tokens=True).split()))
```

    28/4 covid bùng phát ở scotland chiếm 80 % là biến chủng delta và beta


## Format input text **without** bias phrases


```python
outputs = model.generate(**{
    "input_ids": torch.tensor(input_ids),
    "attention_mask": torch.tensor(attention_mask),
    "bias_input_ids": None,
    "bias_attention_mask": None,
}, output_attentions=True, num_beams=1, num_return_sequences=1)

for output in outputs.cpu().detach().numpy().tolist():
    # print('\n', tokenizer.decode(output, skip_special_tokens=True).split(), '\n')
    print(tokenizer.sp_model.DecodePieces(tokenizer.decode(output, skip_special_tokens=True).split()))
```

    28/4 cô vít bùng phát ở sờ cốt lờn chiếm 80 % là biến chủng đen ta và bê ta


## About

*Built by Binh Nguyen*
[![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
For more details, visit the project repository.
[![GitHub stars](https://img.shields.io/github/stars/nguyenvulebinh/spoken-norm?style=social)](https://github.com/nguyenvulebinh/spoken-norm)