LibreFLUX-ControlNet
This model/pipeline is the product of my LibreFlux ControlNet training repo, which uses LibreFLUX as the underlying Transformer model for the ControlNet. For the dataset, I auto labeled 165K images from the SA1B dataset and trained for 1 epoch. I've tested using this ControlNet model as a base for transfer learning to less generic datasets, the results are good!
How does this relate to LibreFLUX?
- Base model is LibreFLUX
- Trained in same non-distilled fashion
- Uses Attention Masking
- Uses CFG during Inference
Fun Facts
- Trained on 165K segmented images from Meta's SA1B Dataset
- Trained using this repo: https://github.com/NeuralVFX/LibreFLUX-ControlNet
- Transformer model used: https://huggingface.co/jimmycarter/LibreFlux-SimpleTuner
- Inference code roughly adapted from: https://github.com/bghira/SimpleTuner
Compatibility
pip install -U diffusers==0.32.0
pip install -U "transformers @ git+https://github.com/huggingface/transformers@e15687fffe5c9d20598a19aeab721ae0a7580f8a"
Low VRAM:
pip install optimum-quanto
Load Pipeline
import torch
from diffusers import DiffusionPipeline
model_id = "neuralvfx/LibreFlux-ControlNet"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline=model_id,
trust_remote_code=True,
torch_dtype=dtype,
safety_checker=None
).to(device)
Inference
from PIL import Image
from torchvision.transforms import ToTensor
# Load Control Image
cond = Image.open("examples/libre_flux_control_image.png")
cond = cond.resize((1024, 1024))
# Convert PIL image to tensor and move to device with correct dtype
cond_tensor = ToTensor()(cond)[:3,:,:].to(pipe.device, dtype=pipe.dtype).unsqueeze(0)
out = pipe(
prompt="many pieces of drift wood spelling libre flux sitting casting shadow on the lumpy sandy beach with foot prints all over it",
negative_prompt="blurry",
control_image=cond_tensor, # Use the tensor here
num_inference_steps=75,
guidance_scale=4.0,
height =1024,
width=1024,
controlnet_conditioning_scale=1.0,
num_images_per_prompt=1,
control_mode=None,
generator= torch.Generator().manual_seed(32),
return_dict=True,
)
out.images[0]
Load Pipeline ( Low VRAM )
import torch
from diffusers import DiffusionPipeline
from optimum.quanto import freeze, quantize, qint8
model_id = "neuralvfx/LibreFlux-ControlNet"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline=model_id,
trust_remote_code=True,
torch_dtype=dtype,
safety_checker=None
)
quantize(
pipe.transformer,
weights=qint8,
exclude=[
"*.norm", "*.norm1", "*.norm2", "*.norm2_context",
"proj_out", "x_embedder", "norm_out", "context_embedder",
],
)
quantize(
pipe.controlnet,
weights=qint8,
exclude=[
"*.norm", "*.norm1", "*.norm2", "*.norm2_context",
"proj_out", "x_embedder", "norm_out", "context_embedder",
],
)
freeze(pipe.transformer)
freeze(pipe.controlnet)
pipe.enable_model_cpu_offload()
- Downloads last month
- 258
Model tree for neuralvfx/LibreFlux-ControlNet
Base model
jimmycarter/LibreFLUX