YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
EXAMPLE USAGE
# Install required packages if needed
# !pip install transformers torch unsloth
from transformers import AutoModelForCausalLM, AutoTokenizer
from unsloth.chat_templates import get_chat_template
from unsloth import FastLanguageModel
import torch
# Load the electrical engineering model
model_name = "neuralnets/electrical_engg_model"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Apply the chat template to format inputs correctly
tokenizer = get_chat_template(
tokenizer,
chat_template = "llama-3.1",
)
# Enable faster inference using Unsloth
model = FastLanguageModel.for_inference(model)
# Move model to GPU if available (or specify your device)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# Create an electrical engineering related query
messages = [
{"role": "user", "content": "Explain the working principle of a three-phase induction motor."},
]
# Format the input using the chat template
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True, # Required for generation
return_tensors = "pt",
).to(device)
# Set up text streaming for real-time output
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
# Generate response
outputs = model.generate(
input_ids = inputs,
streamer = text_streamer,
max_new_tokens = 512,
use_cache = True,
temperature = 0.7, # Adjust temperature for creativity vs precision
min_p = 0.05 # Nucleus sampling parameter
)
# If you want to capture the full response as a string
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support