|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- medalpaca/medical_meadow_medqa |
|
model-index: |
|
- name: mistral-7b-instruct-v02 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.6.0` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
|
|
trust_remote_code: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: medalpaca/medical_meadow_medqa |
|
type: alpaca |
|
dataset_prepared_path: |
|
val_set_size: 0.2 |
|
output_dir: ./qlora-mistral-7b |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
lora_r: 256 |
|
lora_alpha: 128 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 2 |
|
num_epochs: 3 |
|
optimizer: adamw_torch |
|
lr_scheduler: cosine |
|
learning_rate: 0.00002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: |
|
tf32: |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: |
|
evals_per_epoch: 4 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
- full_shard |
|
- auto_wrap |
|
fsdp_config: |
|
fsdp_limit_all_gathers: true |
|
fsdp_sync_module_states: true |
|
fsdp_offload_params: true |
|
fsdp_use_orig_params: false |
|
fsdp_cpu_ram_efficient_loading: true |
|
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP |
|
fsdp_transformer_layer_cls_to_wrap: |
|
fsdp_state_dict_type: FULL_STATE_DICT |
|
fsdp_sharding_strategy: FULL_SHARD |
|
special_tokens: |
|
|
|
wandb_project: mistral-7b-instruct-v02 |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
hub_model_id: neginashz/mistral-7b-instruct-v02 |
|
hub_strategy: |
|
early_stopping_patience: |
|
|
|
resume_from_checkpoint: |
|
auto_resume_from_checkpoints: true |
|
early_stopping_patience: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# mistral-7b-instruct-v02 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the medalpaca/medical_meadow_medqa dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1324 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- total_train_batch_size: 8 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 3 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.1395 | 0.2683 | 11 | 0.1455 | |
|
| 0.117 | 0.5366 | 22 | 0.1259 | |
|
| 0.1221 | 0.8049 | 33 | 0.1206 | |
|
| 0.1076 | 1.0488 | 44 | 0.1149 | |
|
| 0.0906 | 1.3171 | 55 | 0.1119 | |
|
| 0.093 | 1.5854 | 66 | 0.1201 | |
|
| 0.0868 | 1.8537 | 77 | 0.1121 | |
|
| 0.0634 | 2.0976 | 88 | 0.1146 | |
|
| 0.0464 | 2.3659 | 99 | 0.1297 | |
|
| 0.0574 | 2.6341 | 110 | 0.1329 | |
|
| 0.047 | 2.9024 | 121 | 0.1324 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.21.0 |