neerajjulka

neerajjulka

AI & ML interests

None yet

Recent Activity

Organizations

None yet

neerajjulka's activity

New activity in microsoft/OmniParser about 1 month ago
reacted to akhaliq's post with ❤️ 10 months ago
view post
Post
Simple and Scalable Strategies to Continually Pre-train Large Language Models

Simple and Scalable Strategies to Continually Pre-train Large Language Models (2403.08763)

Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes available. A much more efficient solution is to continually pre-train these models, saving significant compute compared to re-training. However, the distribution shift induced by new data typically results in degraded performance on previous data or poor adaptation to the new data. In this work, we show that a simple and scalable combination of learning rate (LR) re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch on all available data, as measured by final loss and language model (LM) evaluation benchmarks. Specifically, we show this for a weak but realistic distribution shift between two commonly used LLM pre-training datasets (EnglishrightarrowEnglish) and a stronger distribution shift (EnglishrightarrowGerman) at the 405M parameter model scale with large dataset sizes (hundreds of billions of tokens). Selecting the weak but realistic shift for larger-scale experiments, we also find that our continual learning strategies match the re-training baseline for a 10B parameter LLM. Our results demonstrate that LLMs can be successfully updated via simple and scalable continual learning strategies, matching the re-training baseline using only a fraction of the compute. Finally, inspired by previous work, we propose alternatives to the cosine learning rate schedule that help circumvent forgetting induced by LR re-warming and that are not bound to a fixed token budget.
reacted to andrewyng's post with 👍 11 months ago
view post
Post
DeepLearning.AI just announced a new short course: Open Source Models with Hugging Face 🤗, taught by Hugging Face's own Maria Khalusova, Marc Sun and Younes Belkada!

As many of you already know, Hugging Face has been a game changer by letting developers quickly grab any of hundreds of thousands of already-trained open source models to assemble into new applications. This course teaches you best practices for building this way, including how to search and choose among models.

You'll learn to use the Transformers library and walk through multiple models for text, audio, and image processing, including zero-shot image segmentation, zero-shot audio classification, and speech recognition. You'll also learn to use multimodal models for visual question answering, image search, and image captioning. Finally, you’ll learn how to demo what you build locally, on the cloud, or via an API using Gradio and Hugging Face Spaces.

Thank you very much to Hugging Face's wonderful team for working with us on this.

You can sign up for the course here: https://www.deeplearning.ai/short-courses/open-source-models-hugging-face/
  • 1 reply
·