metadata
library_name: transformers
tags:
- experimental
base_model:
- nbeerbower/llama-3-bophades-v1-8B
datasets:
- jondurbin/gutenberg-dpo-v0.1
- ResplendentAI/NSFW_RP_Format_DPO
- flammenai/Date-DPO-v1
- jondurbin/truthy-dpo-v0.1
license: other
license_name: llama3
llama-3-sauce-v1-8B
This model is based on Llama-3-8b, and is governed by META LLAMA 3 COMMUNITY LICENSE AGREEMENT
This is a bad finetune on llama-3-bophades-v1-8B using various DPO sets.
Method
Finetuned using an A100 on Google Colab.
Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne
Configuration
Dataset preparation:
def chatml_format(example):
# Initialize formatted system message
system = ""
# Check if 'system' field exists and is not None
if example.get('system'):
message = {"role": "system", "content": example['system']}
system = tokenizer.apply_chat_template([message], tokenize=False)
# Format instruction
message = {"role": "user", "content": example['prompt']}
prompt = tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=True)
# Format chosen answer
chosen = example['chosen'] + "<|im_end|>\n"
# Format rejected answer
rejected = example['rejected'] + "<|im_end|>\n"
return {
"prompt": system + prompt,
"chosen": chosen,
"rejected": rejected,
}
# Array of datasets to concat
ds = [
"jondurbin/truthy-dpo-v0.1",
"ResplendentAI/NSFW_RP_Format_DPO",
"jondurbin/gutenberg-dpo-v0.1",
"flammenai/Date-DPO-v1"
]
# load_dataset and combine all
loaded_datasets = [load_dataset(dataset_name, split='train') for dataset_name in ds]
dataset = concatenate_datasets(loaded_datasets)
# Save columns
original_columns = dataset.column_names
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
# Format dataset
dataset = dataset.map(
chatml_format,
remove_columns=original_columns
)
LoRA, model, and training settings:
# LoRA configuration
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
gradient_checkpointing=True,
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_steps=420,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
max_prompt_length=2048,
max_length=4096,
force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()