File size: 1,925 Bytes
4dbc1bc a82f2f3 f9aeb54 a82f2f3 4dbc1bc 4a99b7e 4dbc1bc 4a99b7e ce18173 8a74461 f9aeb54 a82f2f3 4dbc1bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
tags:
- generated_from_keras_callback
model-index:
- name: nathanReitinger/mlcb
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nathanReitinger/mlcb
This model is a fine-tuned version of [dbernsohn/roberta-javascript](https://huggingface.co/dbernsohn/roberta-javascript) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0463
- Validation Loss: 0.0930
- Train Accuracy: 0.9708
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 910, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.1291 | 0.1235 | 0.9693 | 0 |
| 0.0874 | 0.1073 | 0.9662 | 1 |
| 0.0720 | 0.1026 | 0.9677 | 2 |
| 0.0588 | 0.0950 | 0.9708 | 3 |
| 0.0463 | 0.0930 | 0.9708 | 4 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.11.0
- Datasets 2.13.2
- Tokenizers 0.13.3
|