File size: 2,669 Bytes
4b3aee4 45b1c98 4b3aee4 63e3fa8 4b3aee4 63e3fa8 4b3aee4 45b1c98 4b3aee4 b00b9f1 4b3aee4 b00b9f1 4b3aee4 b00b9f1 4b3aee4 b00b9f1 4b3aee4 45b1c98 b00b9f1 4b3aee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: google/vit-huge-patch14-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FASHION-vision
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FASHION-vision
This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2854
- Accuracy: 0.9055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7694 | 1.0 | 375 | 0.7344 | 0.8202 |
| 0.4737 | 2.0 | 750 | 0.5042 | 0.8457 |
| 0.4318 | 3.0 | 1125 | 0.3876 | 0.8702 |
| 0.3395 | 4.0 | 1500 | 0.3688 | 0.8769 |
| 0.3105 | 5.0 | 1875 | 0.3357 | 0.8845 |
| 0.2742 | 6.0 | 2250 | 0.3272 | 0.883 |
| 0.2898 | 7.0 | 2625 | 0.3156 | 0.8903 |
| 0.2774 | 8.0 | 3000 | 0.3004 | 0.8937 |
| 0.2833 | 9.0 | 3375 | 0.2976 | 0.8933 |
| 0.2398 | 10.0 | 3750 | 0.2954 | 0.8954 |
| 0.2143 | 11.0 | 4125 | 0.2724 | 0.9055 |
| 0.1808 | 12.0 | 4500 | 0.2843 | 0.8985 |
| 0.2298 | 13.0 | 4875 | 0.2918 | 0.8968 |
| 0.218 | 14.0 | 5250 | 0.2742 | 0.9036 |
| 0.1885 | 15.0 | 5625 | 0.2932 | 0.8976 |
| 0.1927 | 16.0 | 6000 | 0.2875 | 0.904 |
| 0.1546 | 17.0 | 6375 | 0.2832 | 0.9066 |
| 0.186 | 18.0 | 6750 | 0.2796 | 0.9054 |
| 0.1515 | 19.0 | 7125 | 0.2850 | 0.9018 |
| 0.1766 | 20.0 | 7500 | 0.2854 | 0.9055 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.2
- Datasets 2.19.0
- Tokenizers 0.19.1
|