File size: 2,669 Bytes
4b3aee4
 
45b1c98
4b3aee4
 
 
 
 
63e3fa8
4b3aee4
 
 
 
 
 
63e3fa8
4b3aee4
45b1c98
4b3aee4
b00b9f1
 
4b3aee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b00b9f1
 
4b3aee4
 
b00b9f1
4b3aee4
 
 
b00b9f1
4b3aee4
 
 
45b1c98
 
b00b9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3aee4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: google/vit-huge-patch14-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FASHION-vision
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# FASHION-vision

This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2854
- Accuracy: 0.9055

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7694        | 1.0   | 375  | 0.7344          | 0.8202   |
| 0.4737        | 2.0   | 750  | 0.5042          | 0.8457   |
| 0.4318        | 3.0   | 1125 | 0.3876          | 0.8702   |
| 0.3395        | 4.0   | 1500 | 0.3688          | 0.8769   |
| 0.3105        | 5.0   | 1875 | 0.3357          | 0.8845   |
| 0.2742        | 6.0   | 2250 | 0.3272          | 0.883    |
| 0.2898        | 7.0   | 2625 | 0.3156          | 0.8903   |
| 0.2774        | 8.0   | 3000 | 0.3004          | 0.8937   |
| 0.2833        | 9.0   | 3375 | 0.2976          | 0.8933   |
| 0.2398        | 10.0  | 3750 | 0.2954          | 0.8954   |
| 0.2143        | 11.0  | 4125 | 0.2724          | 0.9055   |
| 0.1808        | 12.0  | 4500 | 0.2843          | 0.8985   |
| 0.2298        | 13.0  | 4875 | 0.2918          | 0.8968   |
| 0.218         | 14.0  | 5250 | 0.2742          | 0.9036   |
| 0.1885        | 15.0  | 5625 | 0.2932          | 0.8976   |
| 0.1927        | 16.0  | 6000 | 0.2875          | 0.904    |
| 0.1546        | 17.0  | 6375 | 0.2832          | 0.9066   |
| 0.186         | 18.0  | 6750 | 0.2796          | 0.9054   |
| 0.1515        | 19.0  | 7125 | 0.2850          | 0.9018   |
| 0.1766        | 20.0  | 7500 | 0.2854          | 0.9055   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.2
- Datasets 2.19.0
- Tokenizers 0.19.1