File size: 2,257 Bytes
dcf495d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
tags:
- huggingpics
- image-classification
- generated_from_trainer
metrics:
- accuracy
model_index:
- name: planes-trains-automobiles
results:
- task:
name: Image Classification
type: image-classification
metric:
name: Accuracy
type: accuracy
value: 0.9850746268656716
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# planes-trains-automobiles
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the huggingpics dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0534
- Accuracy: 0.9851
## Model description
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### automobiles
![automobiles](images/automobiles.jpg)
#### planes
![planes](images/planes.jpg)
#### trains
![trains](images/trains.jpg)
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0283 | 1.0 | 48 | 0.0434 | 0.9851 |
| 0.0224 | 2.0 | 96 | 0.0548 | 0.9851 |
| 0.0203 | 3.0 | 144 | 0.0445 | 0.9851 |
| 0.0195 | 4.0 | 192 | 0.0534 | 0.9851 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|