File size: 2,075 Bytes
cf57be0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: nandysoham/Poultry-theme-finetuned-overfinetuned
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nandysoham/Poultry-theme-finetuned-overfinetuned
This model is a fine-tuned version of [nandysoham/distilbert-base-uncased-finetuned-squad](https://huggingface.co/nandysoham/distilbert-base-uncased-finetuned-squad) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.4170
- Train End Logits Accuracy: 0.4667
- Train Start Logits Accuracy: 0.4583
- Validation Loss: 1.9876
- Validation End Logits Accuracy: 0.4839
- Validation Start Logits Accuracy: 0.5161
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 30, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 2.4170 | 0.4667 | 0.4583 | 1.9876 | 0.4839 | 0.5161 | 0 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|