distilbert-base-uncased
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9069
- Accuracy: {'accuracy': 0.871}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 1.7205 | {'accuracy': 0.868} |
0.1563 | 2.0 | 500 | 1.5937 | {'accuracy': 0.865} |
0.1563 | 3.0 | 750 | 1.6187 | {'accuracy': 0.861} |
0.1939 | 4.0 | 1000 | 1.2535 | {'accuracy': 0.861} |
0.1939 | 5.0 | 1250 | 1.5725 | {'accuracy': 0.87} |
0.0701 | 6.0 | 1500 | 1.7691 | {'accuracy': 0.874} |
0.0701 | 7.0 | 1750 | 1.8419 | {'accuracy': 0.864} |
0.0224 | 8.0 | 2000 | 1.8159 | {'accuracy': 0.876} |
0.0224 | 9.0 | 2250 | 1.9088 | {'accuracy': 0.871} |
0.0129 | 10.0 | 2500 | 1.9069 | {'accuracy': 0.871} |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
Model tree for nainakader/distilbert-base-uncased
Base model
distilbert/distilbert-base-uncased