YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

このモデルを用いた出力例

※Omnicampusの環境では依存環境が壊れてunslothが使えなかったのでColab L4での再現方法

!pip install --no-cache-dir unsloth==2024.12.4 ipywidgets flash-attn==2.7.0.post2
import json

from tqdm import tqdm
from unsloth import FastLanguageModel


model_name = 'myamafuj/gemma-2-27b-it'
max_seq_length = 2048
dtype = None
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = model_name,
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    trust_remote_code=True,
)
FastLanguageModel.for_inference(model)

datasets = []
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

prompt_template = \
"""###以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。

### 指示:
{}

### 応答:
"""
results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = prompt_template.format(input)

  inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 応答:')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

with open(f"{model_name}_output.jsonl".split('/')[-1], 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')

base_model: unsloth/gemma-2-27b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en

Uploaded model

  • Developed by: myamafuj
  • License: apache-2.0
  • Finetuned from model : unsloth/gemma-2-27b-bnb-4bit

This gemma2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.