flan-t5-base-opus-en-id-id-en

This model consist to be Translator in multimodal Indonesia and English only.

Model Details

Model Description

  • Model type: Language model
  • Language(s) (NLP): English, Indonesian
  • License: Apache 2.0

Usage

Using the Pytorch model

Running the model on a CPU

Click to expand
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Running the model on a GPU

Click to expand
# pip install accelerate
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto")
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Running the model on a GPU using different precisions

FP16

Click to expand
# pip install accelerate
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-ene")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto", torch_dtype=torch.float16)
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

INT8

Click to expand
# pip install bitsandbytes accelerate
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto", load_in_8bit=True)
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Training results

Training Loss Epoch Step Validation Loss Score Counts Totals Precisions Bp Sys Len Ref Len Gen Len
1.6959 0.55 4000 1.5776 30.6542 [4414, 2368, 1345, 733] [7417, 6417, 5426, 4519] [59.511932047997846, 36.9019791179679, 24.78805750092149, 16.220402743969906] 1.0 7417 7354 10.77
1.4378 1.11 8000 1.4527 32.3772 [4526, 2538, 1483, 834] [7567, 6567, 5576, 4666] [59.81234306858729, 38.647784376427595, 26.596126255380202, 17.873981997428203] 1.0 7567 7354 10.885
1.3904 1.66 12000 1.3961 33.8978 [4558, 2559, 1494, 836] [7286, 6286, 5295, 4383] [62.55833104584134, 40.70951320394528, 28.21529745042493, 19.073693817020306] 0.9907 7286 7354 10.569
1.3035 2.21 16000 1.3758 34.9471 [4609, 2628, 1546, 880] [7297, 6297, 5306, 4392] [63.16294367548308, 41.73415912339209, 29.136826234451565, 20.036429872495447] 0.9922 7297 7354 10.591
1.2994 2.77 20000 1.3685 35.0259 [4617, 2627, 1550, 883] [7288, 6288, 5297, 4382] [63.350713501646545, 41.777989821882954, 29.261846328110252, 20.150616157005935] 0.991 7288 7354 10.556

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
24
Safetensors
Model size
248M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.