File size: 2,506 Bytes
fce8a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora

base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A photo of <s0><s1>
license: openrail++
---

# SDXL LoRA DreamBooth - multimodalart/p0l1z1n

<Gallery />

## Model description

### These are multimodalart/p0l1z1n LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

The weights were trained  using [DreamBooth](https://dreambooth.github.io/).

LoRA for the text encoder was enabled: False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.

## Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept `TOK` → use `<s0><s1>` in your prompt 



## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('multimodalart/p0l1z1n', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='multimodalart/p0l1z1n', filename="embeddings.safetensors", repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
        
image = pipeline('A photo of <s0><s1>').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)

## Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- Download the LoRA *.safetensors [here](multimodalart/p0l1z1n/tree/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder.
- Download the text embeddings *.safetensors [here](multimodalart/p0l1z1n/tree/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder.

All [Files & versions](multimodalart/p0l1z1n/tree/main).