File size: 2,506 Bytes
fce8a79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A photo of <s0><s1>
license: openrail++
---
# SDXL LoRA DreamBooth - multimodalart/p0l1z1n
<Gallery />
## Model description
### These are multimodalart/p0l1z1n LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('multimodalart/p0l1z1n', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='multimodalart/p0l1z1n', filename="embeddings.safetensors", repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
image = pipeline('A photo of <s0><s1>').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Download model
Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- Download the LoRA *.safetensors [here](multimodalart/p0l1z1n/tree/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder.
- Download the text embeddings *.safetensors [here](multimodalart/p0l1z1n/tree/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder.
All [Files & versions](multimodalart/p0l1z1n/tree/main).
|