muhtasham's picture
update model card README.md
810f45d
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imdb
metrics:
  - accuracy
  - f1
model-index:
  - name: mini-vanilla-target-imdb
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: imdb
          type: imdb
          config: plain_text
          split: train
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.87528
          - name: F1
            type: f1
            value: 0.9334925984386332

mini-vanilla-target-imdb

This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the imdb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4773
  • Accuracy: 0.8753
  • F1: 0.9335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.4272 0.64 500 0.2066 0.92 0.9583
0.299 1.28 1000 0.2608 0.8906 0.9422
0.2533 1.92 1500 0.1706 0.9337 0.9657
0.2126 2.56 2000 0.3601 0.8576 0.9233
0.1913 3.2 2500 0.3955 0.8594 0.9244
0.1541 3.84 3000 0.1432 0.9484 0.9735
0.1432 4.48 3500 0.2027 0.9346 0.9662
0.1256 5.12 4000 0.3797 0.8898 0.9417
0.1026 5.75 4500 0.4773 0.8753 0.9335

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.7.1
  • Tokenizers 0.13.2