muhtasham commited on
Commit
810f45d
1 Parent(s): c8c2c2f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imdb
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: mini-vanilla-target-imdb
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: imdb
18
+ type: imdb
19
+ config: plain_text
20
+ split: train
21
+ args: plain_text
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.87528
26
+ - name: F1
27
+ type: f1
28
+ value: 0.9334925984386332
29
+ ---
30
+
31
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
+ should probably proofread and complete it, then remove this comment. -->
33
+
34
+ # mini-vanilla-target-imdb
35
+
36
+ This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the imdb dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 0.4773
39
+ - Accuracy: 0.8753
40
+ - F1: 0.9335
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 3e-05
60
+ - train_batch_size: 32
61
+ - eval_batch_size: 32
62
+ - seed: 42
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: constant
65
+ - num_epochs: 200
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
71
+ | 0.4272 | 0.64 | 500 | 0.2066 | 0.92 | 0.9583 |
72
+ | 0.299 | 1.28 | 1000 | 0.2608 | 0.8906 | 0.9422 |
73
+ | 0.2533 | 1.92 | 1500 | 0.1706 | 0.9337 | 0.9657 |
74
+ | 0.2126 | 2.56 | 2000 | 0.3601 | 0.8576 | 0.9233 |
75
+ | 0.1913 | 3.2 | 2500 | 0.3955 | 0.8594 | 0.9244 |
76
+ | 0.1541 | 3.84 | 3000 | 0.1432 | 0.9484 | 0.9735 |
77
+ | 0.1432 | 4.48 | 3500 | 0.2027 | 0.9346 | 0.9662 |
78
+ | 0.1256 | 5.12 | 4000 | 0.3797 | 0.8898 | 0.9417 |
79
+ | 0.1026 | 5.75 | 4500 | 0.4773 | 0.8753 | 0.9335 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.25.1
85
+ - Pytorch 1.12.1
86
+ - Datasets 2.7.1
87
+ - Tokenizers 0.13.2