--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: mini-vanilla-target-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87528 - name: F1 type: f1 value: 0.9334925984386332 --- # mini-vanilla-target-imdb This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4773 - Accuracy: 0.8753 - F1: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4272 | 0.64 | 500 | 0.2066 | 0.92 | 0.9583 | | 0.299 | 1.28 | 1000 | 0.2608 | 0.8906 | 0.9422 | | 0.2533 | 1.92 | 1500 | 0.1706 | 0.9337 | 0.9657 | | 0.2126 | 2.56 | 2000 | 0.3601 | 0.8576 | 0.9233 | | 0.1913 | 3.2 | 2500 | 0.3955 | 0.8594 | 0.9244 | | 0.1541 | 3.84 | 3000 | 0.1432 | 0.9484 | 0.9735 | | 0.1432 | 4.48 | 3500 | 0.2027 | 0.9346 | 0.9662 | | 0.1256 | 5.12 | 4000 | 0.3797 | 0.8898 | 0.9417 | | 0.1026 | 5.75 | 4500 | 0.4773 | 0.8753 | 0.9335 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2