fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-large-with-ITTL-with-freeze-LR-1e-05
This model is a fine-tuned version of xlm-roberta-large on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8698
- Exact Match: 74.6073
- F1: 81.6214
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
6.2825 |
0.49 |
36 |
2.2341 |
49.2147 |
49.3071 |
3.465 |
0.98 |
72 |
1.8139 |
49.2147 |
49.4968 |
1.9165 |
1.48 |
108 |
1.3110 |
50.6545 |
59.1184 |
1.9165 |
1.97 |
144 |
0.9907 |
65.0524 |
72.4023 |
1.2487 |
2.46 |
180 |
0.9051 |
68.1937 |
75.7323 |
0.9426 |
2.95 |
216 |
0.8485 |
67.8010 |
75.3684 |
0.8069 |
3.45 |
252 |
0.8499 |
70.0262 |
77.7548 |
0.8069 |
3.94 |
288 |
0.9202 |
67.5393 |
74.8123 |
0.7193 |
4.44 |
324 |
0.7897 |
73.0366 |
79.9552 |
0.6234 |
4.92 |
360 |
0.7973 |
73.6911 |
80.5009 |
0.6234 |
5.42 |
396 |
0.8353 |
72.9058 |
80.2879 |
0.5583 |
5.91 |
432 |
0.8392 |
73.4293 |
80.6345 |
0.5263 |
6.41 |
468 |
0.8477 |
73.5602 |
81.0016 |
0.4642 |
6.9 |
504 |
0.8355 |
74.6073 |
81.7391 |
0.4642 |
7.39 |
540 |
0.8383 |
73.5602 |
81.1187 |
0.4381 |
7.88 |
576 |
0.8828 |
73.0366 |
79.8504 |
0.4099 |
8.38 |
612 |
0.8698 |
74.6073 |
81.6214 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2