eo_train1-10_eval11

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6932
  • Accuracy: 0.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 7658372
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0 0 2.6863 0.0
0.6284 100.0 100 0.7859 0.5
0.548 200.0 200 0.7353 0.5
0.5022 300.0 300 0.6964 0.5
0.6935 400.0 400 0.6936 0.5
0.6933 500.0 500 0.6933 0.5
0.6932 600.0 600 0.6932 0.5
0.6932 700.0 700 0.6932 0.5
0.6932 800.0 800 0.6932 0.5
0.6932 900.0 900 0.6932 0.5
0.6932 1000.0 1000 0.6932 0.5
0.6932 1100.0 1100 0.6932 0.5
0.6932 1200.0 1200 0.6932 0.5
0.6932 1300.0 1300 0.6932 0.5
0.6932 1400.0 1400 0.6932 0.5
0.6932 1500.0 1500 0.6932 0.5
0.6932 1600.0 1600 0.6932 0.5
0.6932 1700.0 1700 0.6932 0.5
0.6932 1800.0 1800 0.6932 0.5
0.6932 1900.0 1900 0.6932 0.5
0.6932 2000.0 2000 0.6932 0.5
0.6932 2100.0 2100 0.6932 0.5
0.6932 2200.0 2200 0.6932 0.5
0.6932 2300.0 2300 0.6932 0.5
0.6932 2400.0 2400 0.6932 0.5
0.6932 2500.0 2500 0.6932 0.5
0.6932 2600.0 2600 0.6932 0.5
0.6932 2700.0 2700 0.6932 0.5
0.6932 2800.0 2800 0.6932 0.5
0.6932 2900.0 2900 0.6932 0.5
0.6932 3000.0 3000 0.6932 0.5

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
1
Safetensors
Model size
797k params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support