emotion_model_improved

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2881
  • Macro F1: 0.5947
  • Micro F1: 0.6896
  • Accuracy: 0.8522
  • F1 Anger: 0.8051
  • Precision Anger: 0.7756
  • Recall Anger: 0.8368
  • F1 Anticipation: 0.3591
  • Precision Anticipation: 0.3484
  • Recall Anticipation: 0.3705
  • F1 Disgust: 0.7122
  • Precision Disgust: 0.6203
  • Recall Disgust: 0.8360
  • F1 Fear: 0.7222
  • Precision Fear: 0.6506
  • Recall Fear: 0.8115
  • F1 Joy: 0.8601
  • Precision Joy: 0.8641
  • Recall Joy: 0.8561
  • F1 Sadness: 0.7075
  • Precision Sadness: 0.6030
  • Recall Sadness: 0.8558
  • F1 Surprise: 0.2393
  • Precision Surprise: 0.3305
  • Recall Surprise: 0.1875
  • F1 Trust: 0.2643
  • Precision Trust: 0.2242
  • Recall Trust: 0.3217
  • F1 Love: 0.6566
  • Precision Love: 0.7855
  • Recall Love: 0.5640
  • F1 Optimism: 0.7413
  • Precision Optimism: 0.7730
  • Recall Optimism: 0.7122
  • F1 Pessimism: 0.4745
  • Precision Pessimism: 0.3367
  • Recall Pessimism: 0.8032
  • Positive Predictions Pct: 25.8683
  • Positive Labels Pct: 21.7367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Macro F1 Micro F1 Accuracy F1 Anger Precision Anger Recall Anger F1 Anticipation Precision Anticipation Recall Anticipation F1 Disgust Precision Disgust Recall Disgust F1 Fear Precision Fear Recall Fear F1 Joy Precision Joy Recall Joy F1 Sadness Precision Sadness Recall Sadness F1 Surprise Precision Surprise Recall Surprise F1 Trust Precision Trust Recall Trust F1 Love Precision Love Recall Love F1 Optimism Precision Optimism Recall Optimism F1 Pessimism Precision Pessimism Recall Pessimism Positive Predictions Pct Positive Labels Pct
0.6834 1.0 72 0.4816 0.2295 0.4570 0.6345 0.5297 0.3603 1.0 0.0 0.0 0.0 0.4483 0.2889 1.0 0.0 0.0 0.0 0.5649 0.3936 1.0 0.4936 0.3277 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4884 0.3238 0.9937 0.0 0.0 0.0 45.3927 21.9208
0.4738 2.0 144 0.3507 0.4607 0.6320 0.7951 0.7069 0.5593 0.9604 0.0 0.0 0.0 0.6359 0.4807 0.9388 0.4906 0.3694 0.7302 0.8185 0.7592 0.8877 0.6246 0.4692 0.9336 0.0 0.0 0.0 0.0 0.0 0.0 0.6323 0.5235 0.7980 0.7368 0.6486 0.8529 0.4223 0.2951 0.7422 33.7556 21.9208
0.3445 3.0 216 0.3131 0.5845 0.6929 0.8585 0.7807 0.8 0.7623 0.3463 0.4804 0.2707 0.7273 0.6953 0.7624 0.7003 0.7637 0.6465 0.8477 0.8140 0.8843 0.7385 0.6994 0.7822 0.1839 0.2051 0.1667 0.2020 0.1360 0.3924 0.6915 0.6374 0.7557 0.7637 0.7268 0.8046 0.4473 0.3785 0.5467 24.1394 21.9208
0.3076 4.0 288 0.3035 0.5792 0.6867 0.8561 0.7741 0.7691 0.7792 0.3486 0.3904 0.3149 0.7255 0.6826 0.7741 0.6789 0.7818 0.6 0.8348 0.7760 0.9033 0.7201 0.7044 0.7365 0.2316 0.2340 0.2292 0.1949 0.1364 0.3418 0.6912 0.6792 0.7036 0.7587 0.7018 0.8256 0.4125 0.3882 0.44 24.0158 21.9208
0.2836 5.0 360 0.2969 0.6002 0.7045 0.8648 0.7859 0.7927 0.7792 0.3462 0.4122 0.2983 0.7387 0.6950 0.7882 0.7364 0.6926 0.7860 0.8543 0.8160 0.8964 0.7339 0.7137 0.7552 0.2735 0.2319 0.3333 0.2190 0.1756 0.2911 0.6983 0.6779 0.7199 0.7653 0.7440 0.7878 0.4508 0.3927 0.5289 23.8366 21.9208
0.27 6.0 432 0.2930 0.6238 0.6993 0.8541 0.8007 0.7733 0.8302 0.3858 0.4167 0.3591 0.7349 0.6604 0.8282 0.7578 0.7316 0.7860 0.8506 0.8412 0.8601 0.7366 0.7045 0.7718 0.4051 0.5161 0.3333 0.2334 0.1477 0.5570 0.7170 0.6466 0.8046 0.7745 0.7596 0.7899 0.4650 0.3395 0.7378 26.5991 21.9208
0.2587 7.0 504 0.2888 0.6137 0.6969 0.8525 0.7948 0.7756 0.8151 0.3526 0.3697 0.3370 0.7387 0.6667 0.8282 0.7348 0.7704 0.7023 0.8528 0.8406 0.8653 0.7384 0.6776 0.8112 0.3505 0.3469 0.3542 0.2185 0.1403 0.4937 0.7166 0.6524 0.7948 0.7703 0.7370 0.8067 0.4831 0.3532 0.7644 26.7474 21.9208
0.248 8.0 576 0.2865 0.6177 0.6960 0.8520 0.7923 0.7691 0.8170 0.3802 0.3596 0.4033 0.7329 0.6712 0.8071 0.7379 0.7716 0.7070 0.8560 0.8219 0.8929 0.7317 0.7096 0.7552 0.3738 0.3390 0.4167 0.2259 0.1444 0.5190 0.7233 0.6486 0.8176 0.7671 0.7261 0.8130 0.4734 0.3548 0.7111 26.7598 21.9208
0.2404 9.0 648 0.2865 0.6219 0.7087 0.8617 0.7959 0.7900 0.8019 0.3913 0.3850 0.3978 0.7417 0.6811 0.8141 0.7489 0.6902 0.8186 0.8579 0.8361 0.8808 0.7390 0.6831 0.8050 0.3542 0.3542 0.3542 0.2368 0.1812 0.3418 0.7254 0.7721 0.6840 0.7747 0.7525 0.7983 0.475 0.3455 0.76 25.5547 21.9208

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.3.1.post300
  • Datasets 2.2.1
  • Tokenizers 0.21.0
Downloads last month
29
Safetensors
Model size
560M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for msgfrom96/emotion_model_improved

Finetuned
(373)
this model