bert-finetuning-italian

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5598
  • Model Preparation Time: 0.0031
  • Accuracy: 0.7748
  • F1 Macro: 0.7797
  • Precision Macro: 0.7863
  • Recall Macro: 0.7775

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.1612703354421325e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.051758482154894515
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Accuracy F1 Macro Precision Macro Recall Macro
1.0928 1.0 735 0.7222 0.0031 0.6878 0.6933 0.7207 0.6978
0.6827 2.0 1470 0.6133 0.0031 0.7381 0.7456 0.7532 0.7479
0.473 3.0 2205 0.6064 0.0031 0.7544 0.7638 0.7708 0.7602
0.4259 4.0 2940 0.7100 0.0031 0.7469 0.7578 0.7640 0.7534
0.3187 5.0 3675 0.7481 0.0031 0.7524 0.7586 0.7631 0.7587

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
30
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for msab97/bert-finetuning-italian

Finetuned
(3358)
this model