File size: 6,893 Bytes
7767a56
 
 
 
 
 
 
 
 
 
 
 
4beb8db
f8054b1
2c1aff0
68e1975
 
aa06d13
 
 
 
 
 
7767a56
 
 
 
 
ae57aad
 
d643576
 
ae57aad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9687f08
a2121ad
ae57aad
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
language:
- en
license: apache-2.0
tags:
- lora-alpaca
- alpaca
- lora
- LLaMA
- Stanford Alpaca
datasets:
- mrzlab630/trading-candles
pipeline_tag: question-answering
widget:
- text: "identify candle"
  context: "open: 38752.71, close: 38843.7, high: 38847.4, low: 38752.71"
  example_title: "identify candle"
- text: "find candle"
  context: "38811.24,38838.41,38846.71,38736.24,234.00,45275276.00,59816.00,441285.00,645.00,84176.00,1694619.00,15732335.00"
  example_title: "find candle"
- text: "find candle: Bullish"
  context: "38751.32,38818.6,38818.6,38695.03,62759348.00,2605789.00,71030.00,820738.00,59659.00,724738.00,7368363.00,50654.00"
  example_title: "find candle: Bullish"
---




## About:

 The model was fine-tuned on the LLaMA 7B. [weights_Llama_7b](https://huggingface.co/mrzlab630/weights_Llama_7b)

the model is able to identify trading candles.
the model knows about: 

- Four Price Doji,
- Inverted Hammer,
- Hammer,
- Hanging Man,
- Doji,
- Long-legged doji,
- Dragonfly doji,
- Inverted Doji,
- Bullish,
- Bearish


## Prompts:

```
Instruction: identify candle
Input: open:241.5,close:232.9, high:241.7, low:230.8
or Input: 241.5,232.9,241.7,230.8

Output: Bearish

```

```
Instruction: identify candle
Input: open:241.5,close:232.9, high:241.7, low:230.8
or Input: 241.5,232.9, 241.7,230.8

Output: Doji

```

```
Instruction: identify candle:open:241.5,close:232.9, high:241.7, low:230.8
or Instruction: identify candle:241.5,232.9,241.7, 230.8

Output: Bearish:241.5,close:232.9, high:241.7, low:230.8

```


```
Instruction: find candle
Input: 38811.24,38838.41,38846.71,38736.24,234.00,45275276.00,59816.00,441285.00,645.00,84176.00,1694619.00,15732335.00

Output: Dragonfly doji:38811.24,38838.41,38846.71,38736.24

```

Instruction: find candle:  {%candleName%}

```
Instruction: find candle: Bullish
Input: 38751.32,38818.6,38818.6,38695.03,62759348.00,2605789.00,71030.00,820738.00,59659.00,724738.00,7368363.00,50654.00

Output: Bullish:38751.32,38818.6,38818.6,38695.03

```


### RUN

```
import sys
import torch
from peft import PeftModel
import transformers
import gradio as gr

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig


SHARE_GRADIO=True
LOAD_8BIT = False

BASE_MODEL = "mrzlab630/weights_Llama_7b"
LORA_WEIGHTS = "mrzlab630/lora-alpaca-trading-candles"

tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=LOAD_8BIT,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        torch_dtype=torch.float16,
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )


def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:"""

if not LOAD_8BIT:
    model.half()  # seems to fix bugs for some users.

model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
    model = torch.compile(model)


def evaluate(
    instruction,
    input=None,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    **kwargs,
):
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Response:")[1].strip()


gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=2, label="Instruction", placeholder="Tell me about alpacas."
        ),
        gr.components.Textbox(lines=2, label="Input", placeholder="none"),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        gr.components.Slider(
            minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
        ),
    ],
    outputs=[
        gr.inputs.Textbox(
            lines=5,
            label="Output",
        )
    ],
    title="💹 🕯 Alpaca-LoRA-Trading-Candles",
    description="Alpaca-LoRA-Trading-Candles is a 7B-parameter LLaMA model tuned to execute instructions. It is trained on the [trading candles] dataset(https://huggingface.co/datasets/mrzlab630/trading-candles) and uses the Huggingface LLaMA implementation. For more information, visit [project website](https://huggingface.co/mrzlab630/lora-alpaca-trading-candles).\nPrompts:\nInstruction: identify candle, Input: open:241.5,close:232.9, high:241.7, low:230.8\nInstruction: find candle, Input: 38811.24,38838.41,38846.71,38736.24,234.00,45275276.00,59816.00,441285.00,645.00,84176.00,1694619.00,15732335.00\nInstruction: find candle: Bullish, Input: 38751.32,38818.6,38818.6,38695.03,62759348.00,2605789.00,71030.00,820738.00,59659.00,724738.00,7368363.00,50654.00",
).launch(server_name="0.0.0.0", share=SHARE_GRADIO)


```