mamba-coder / README.md
mrm8488's picture
Update README.md
b4c03a2 verified
|
raw
history blame
2.77 kB
metadata
license: wtfpl
datasets:
  - HuggingFaceH4/CodeAlpaca_20K
pipeline_tag: text-generation
thumbnail: https://huggingface.co/mrm8488/mamba-coder/resolve/main/mamba-coder-no-bg.png
language:
  - en
  - code

Mamba-Coder

MAMBA (2.8B) 🐍 fine-tuned on CodeAlpaca_20k for code generation

mamba-coder logo

Base model info

Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of FlashAttention.

Dataset info

CodeAlpaca_20K: contains 20K instruction-following data used for fine-tuning the Code Alpaca model.

Usage

pip install torch==2.1.0 transformers==4.35.0 causal-conv1d==1.0.0 mamba-ssm==1.0.1
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel

CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta"

device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_name = "mrm8488/mamba-coder"

eos_token = "<|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.eos_token = eos_token
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template

model = MambaLMHeadModel.from_pretrained(
        model_name, device=device, dtype=torch.float16)

messages = []
prompt = "Write a bash script to remove .tmp files"
messages.append(dict(role="user", content=prompt))

input_ids = tokenizer.apply_chat_template(
            messages, return_tensors="pt", add_generation_prompt=True
).to(device)

out = model.generate(
    input_ids=input_ids,
    max_length=2000,
    temperature=0.9,
    top_p=0.7,
    eos_token_id=tokenizer.eos_token_id,
)

decoded = tokenizer.batch_decode(out)
assistant_message = (
    decoded[0].split("<|assistant|>\n")[-1].replace(eos_token, "")
)

print(assistant_message)

Gradio Demo

git clone https://github.com/mrm8488/mamba-chat.git
cd mamba-chat

pip install -r requirements.txt
pip install -q gradio==4.8.0

python app.py \
--model mrm8488/mamba-coder \
--share

Evaluations

Coming soon!

Acknowledgments

Thanks to mamba-chat for heavily inspiring our work