
autoevaluator
HF Staff
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
703da8f
language: en | |
tags: | |
- QA | |
- long context | |
- Q&A | |
datasets: | |
- squad_v2 | |
model-index: | |
- name: mrm8488/longformer-base-4096-finetuned-squadv2 | |
results: | |
- task: | |
type: question-answering | |
name: Question Answering | |
dataset: | |
name: squad_v2 | |
type: squad_v2 | |
config: squad_v2 | |
split: validation | |
metrics: | |
- type: exact_match | |
value: 79.9242 | |
name: Exact Match | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTc0YWU0OTlhNWY1MDYwZjBhYTkxZTBhZGEwNGYzZjQzNzkzNjFlZmExMjkwZDRhNmI2ZmMxZGI3ZjUzNzg4NyIsInZlcnNpb24iOjF9.5ZM5B9hvMhKqFneX-R53j2orSroUQNNov9zo7401MtyDL1Nfp2ZgqoUQ2teCy47pBkoqktn0j9lvUFL3BjmlAA | |
- type: f1 | |
value: 83.3467 | |
name: F1 | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzBiZDQ1ODg3MDYyODdkMGJjYTkxM2ExNzliYmRlYjllZTc1ZjIxODkxODkyM2QzZjg5MDhiMmQ2MTFjNGUxYiIsInZlcnNpb24iOjF9.bs4hfGGy_m5KBue2qmpGCWL28esYvJ9ms2Bhwnp1vpWiQbiTV3TDGk6Ds3wKuaBTEw_7rzePlbYNt9auHoQaDQ | |
# Longformer-base-4096 fine-tuned on SQuAD v2 | |
[Longformer-base-4096 model](https://huggingface.co/allenai/longformer-base-4096) fine-tuned on [SQuAD v2](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task. | |
## Longformer-base-4096 | |
[Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. | |
`longformer-base-4096` is a BERT-like model started from the RoBERTa checkpoint and pretrained for MLM on long documents. It supports sequences of length up to 4,096. | |
Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. | |
## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓ | |
Dataset ID: ```squad_v2``` from [HuggingFace/Datasets](https://github.com/huggingface/datasets) | |
| Dataset | Split | # samples | | |
| -------- | ----- | --------- | | |
| squad_v2 | train | 130319 | | |
| squad_v2 | valid | 11873 | | |
How to load it from [datasets](https://github.com/huggingface/datasets) | |
```python | |
!pip install datasets | |
from datasets import load_dataset | |
dataset = load_dataset('squad_v2') | |
``` | |
Check out more about this dataset and others in [Datasets Viewer](https://huggingface.co/datasets/viewer/) | |
## Model fine-tuning 🏋️ | |
The training script is a slightly modified version of [this one](https://colab.research.google.com/drive/1zEl5D-DdkBKva-DdreVOmN0hrAfzKG1o?usp=sharing) | |
## Model in Action 🚀 | |
```python | |
import torch | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering | |
ckpt = "mrm8488/longformer-base-4096-finetuned-squadv2" | |
tokenizer = AutoTokenizer.from_pretrained(ckpt) | |
model = AutoModelForQuestionAnswering.from_pretrained(ckpt) | |
text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this." | |
question = "What has Huggingface done ?" | |
encoding = tokenizer(question, text, return_tensors="pt") | |
input_ids = encoding["input_ids"] | |
# default is local attention everywhere | |
# the forward method will automatically set global attention on question tokens | |
attention_mask = encoding["attention_mask"] | |
start_scores, end_scores = model(input_ids, attention_mask=attention_mask) | |
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) | |
answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1] | |
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) | |
# output => democratized NLP | |
``` | |
## Usage with HF `pipleine` | |
```python | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline | |
ckpt = "mrm8488/longformer-base-4096-finetuned-squadv2" | |
tokenizer = AutoTokenizer.from_pretrained(ckpt) | |
model = AutoModelForQuestionAnswering.from_pretrained(ckpt) | |
qa = pipeline("question-answering", model=model, tokenizer=tokenizer) | |
text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this." | |
question = "What has Huggingface done?" | |
qa({"question": question, "context": text}) | |
``` | |
If given the same context we ask something that is not there, the output for **no answer** will be ```<s>``` | |
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) | |
> Made with <span style="color: #e25555;">♥</span> in Spain | |
[](https://ko-fi.com/Y8Y3VYYE) | |