DeBERTa v3 (small) fine-tuned on SST2

This model is a fine-tuned version of microsoft/deberta-v3-small on the GLUE SST2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2134
  • Accuracy: 0.9404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.176 1.0 4210 0.2134 0.9404
0.1254 2.0 8420 0.2362 0.9415
0.0957 3.0 12630 0.3187 0.9335
0.0673 4.0 16840 0.3039 0.9266
0.0457 5.0 21050 0.3521 0.9312

Framework versions

  • Transformers 4.13.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 1.15.1
  • Tokenizers 0.10.3
Downloads last month
18
Safetensors
Model size
142M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mrm8488/deberta-v3-small-finetuned-sst2

Finetunes
1 model

Dataset used to train mrm8488/deberta-v3-small-finetuned-sst2

Evaluation results