run1
This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-es on an unkown dataset. It achieves the following results on the evaluation set:
- Loss: 3.1740
- Bleu: 8.4217
- Gen Len: 15.9457
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
No log | 1.0 | 250 | 4.2342 | 0.8889 | 83.4022 |
4.6818 | 2.0 | 500 | 3.7009 | 4.1671 | 35.587 |
4.6818 | 3.0 | 750 | 3.4737 | 7.6414 | 23.9674 |
3.4911 | 4.0 | 1000 | 3.3713 | 7.7512 | 18.6957 |
3.4911 | 5.0 | 1250 | 3.2689 | 8.0901 | 19.4674 |
3.0164 | 6.0 | 1500 | 3.2194 | 8.5708 | 25.0543 |
3.0164 | 7.0 | 1750 | 3.1853 | 9.5275 | 23.9239 |
2.6954 | 8.0 | 2000 | 3.1562 | 8.5635 | 18.9674 |
2.6954 | 9.0 | 2250 | 3.1564 | 8.2031 | 17.5978 |
2.4503 | 10.0 | 2500 | 3.1314 | 8.5638 | 18.1522 |
2.4503 | 11.0 | 2750 | 3.1511 | 8.8428 | 17.913 |
2.2554 | 12.0 | 3000 | 3.1513 | 8.1244 | 17.0 |
2.2554 | 13.0 | 3250 | 3.1664 | 8.0157 | 16.2717 |
2.1202 | 14.0 | 3500 | 3.1656 | 8.7758 | 16.6087 |
2.1202 | 15.0 | 3750 | 3.1550 | 8.4637 | 16.4565 |
2.0082 | 16.0 | 4000 | 3.1702 | 8.2488 | 15.8587 |
2.0082 | 17.0 | 4250 | 3.1725 | 8.609 | 16.3043 |
1.9274 | 18.0 | 4500 | 3.1750 | 8.4476 | 15.8043 |
1.9274 | 19.0 | 4750 | 3.1734 | 8.4753 | 16.5543 |
1.888 | 20.0 | 5000 | 3.1740 | 8.4217 | 15.9457 |
Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.1.dev0
- Tokenizers 0.10.3
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.