File size: 1,998 Bytes
a5c0eb9
 
 
 
 
 
 
 
 
 
0e686e2
a5c0eb9
 
 
 
 
 
0e686e2
a5c0eb9
7cf96a8
a5c0eb9
8142819
 
 
 
 
a5c0eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb6f0d
0e686e2
 
a5c0eb9
 
 
8142819
a5c0eb9
 
 
7cf96a8
 
8142819
 
 
 
 
 
a5c0eb9
 
 
 
7cf96a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-funsd

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5930
- Precision: 0.7981
- Recall: 0.8675
- F1: 0.8313
- Accuracy: 0.8104

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.67  | 25   | 1.2209          | 0.4642    | 0.5155 | 0.4885 | 0.6559   |
| No log        | 3.33  | 50   | 0.8172          | 0.7324    | 0.776  | 0.7536 | 0.7619   |
| No log        | 5.0   | 75   | 0.6125          | 0.7876    | 0.8435 | 0.8146 | 0.8126   |
| No log        | 6.67  | 100  | 0.5984          | 0.8053    | 0.8665 | 0.8348 | 0.8107   |
| No log        | 8.33  | 125  | 0.5674          | 0.8040    | 0.8715 | 0.8364 | 0.8217   |
| No log        | 10.0  | 150  | 0.5930          | 0.7981    | 0.8675 | 0.8313 | 0.8104   |


### Framework versions

- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 2.13.2
- Tokenizers 0.10.1