update model card README.md
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -48,22 +48,18 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- training_steps:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| No log |
|
58 |
-
| No log |
|
59 |
-
| No log |
|
60 |
-
| No log |
|
61 |
-
| No log |
|
62 |
-
| No log |
|
63 |
-
| No log | 23.33 | 350 | 0.6015 | 0.8744 | 0.9085 | 0.8911 | 0.8429 |
|
64 |
-
| No log | 26.67 | 400 | 0.5982 | 0.8830 | 0.917 | 0.8997 | 0.8536 |
|
65 |
-
| No log | 30.0 | 450 | 0.6316 | 0.8832 | 0.907 | 0.8949 | 0.8493 |
|
66 |
-
| 0.2944 | 33.33 | 500 | 0.6416 | 0.8820 | 0.908 | 0.8948 | 0.8486 |
|
67 |
|
68 |
|
69 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5930
|
23 |
+
- Precision: 0.7981
|
24 |
+
- Recall: 0.8675
|
25 |
+
- F1: 0.8313
|
26 |
+
- Accuracy: 0.8104
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 150
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.67 | 25 | 1.2209 | 0.4642 | 0.5155 | 0.4885 | 0.6559 |
|
58 |
+
| No log | 3.33 | 50 | 0.8172 | 0.7324 | 0.776 | 0.7536 | 0.7619 |
|
59 |
+
| No log | 5.0 | 75 | 0.6125 | 0.7876 | 0.8435 | 0.8146 | 0.8126 |
|
60 |
+
| No log | 6.67 | 100 | 0.5984 | 0.8053 | 0.8665 | 0.8348 | 0.8107 |
|
61 |
+
| No log | 8.33 | 125 | 0.5674 | 0.8040 | 0.8715 | 0.8364 | 0.8217 |
|
62 |
+
| No log | 10.0 | 150 | 0.5930 | 0.7981 | 0.8675 | 0.8313 | 0.8104 |
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|