File size: 2,827 Bytes
6332857
5e50d7b
8ceaebc
6332857
 
8ceaebc
 
6332857
 
 
 
 
 
47c8538
8ceaebc
 
 
 
 
 
 
 
 
 
705218d
8ceaebc
 
705218d
8ceaebc
 
705218d
8ceaebc
 
705218d
6332857
 
 
 
 
47c8538
6332857
8ceaebc
6332857
705218d
 
 
 
 
6332857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7c9320
15fb840
 
6332857
 
 
705218d
6332857
 
 
d7c9320
 
705218d
 
 
 
 
 
 
 
 
 
6332857
 
 
 
5e50d7b
254a705
6332857
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: mp-02/cord
      type: mp-02/cord
    metrics:
    - name: Precision
      type: precision
      value: 0.9672131147540983
    - name: Recall
      type: recall
      value: 0.9776304888152444
    - name: F1
      type: f1
      value: 0.9723939019365472
    - name: Accuracy
      type: accuracy
      value: 0.9766697163769442
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-cord

This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1292
- Precision: 0.9672
- Recall: 0.9776
- F1: 0.9724
- Accuracy: 0.9767

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 3.125  | 250  | 0.6018          | 0.8218    | 0.8633 | 0.8420 | 0.8577   |
| 1.0098        | 6.25   | 500  | 0.2695          | 0.9205    | 0.9495 | 0.9347 | 0.9451   |
| 1.0098        | 9.375  | 750  | 0.1813          | 0.9528    | 0.9693 | 0.9610 | 0.9639   |
| 0.1993        | 12.5   | 1000 | 0.1557          | 0.9616    | 0.9743 | 0.9679 | 0.9739   |
| 0.1993        | 15.625 | 1250 | 0.1749          | 0.9608    | 0.9743 | 0.9675 | 0.9703   |
| 0.0787        | 18.75  | 1500 | 0.1482          | 0.9616    | 0.9743 | 0.9679 | 0.9730   |
| 0.0787        | 21.875 | 1750 | 0.1288          | 0.9640    | 0.9751 | 0.9695 | 0.9762   |
| 0.0433        | 25.0   | 2000 | 0.1292          | 0.9672    | 0.9776 | 0.9724 | 0.9767   |
| 0.0433        | 28.125 | 2250 | 0.1372          | 0.9623    | 0.9735 | 0.9679 | 0.9735   |
| 0.031         | 31.25  | 2500 | 0.1408          | 0.9631    | 0.9743 | 0.9687 | 0.9730   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1