End of training
Browse files
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
base_model: layoutlmv3
|
3 |
tags:
|
4 |
- generated_from_trainer
|
@@ -21,16 +22,16 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
-
value: 0.
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Precision: 0.
|
45 |
-
- Recall: 0.
|
46 |
-
- F1: 0.
|
47 |
-
- Accuracy: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -64,8 +65,8 @@ More information needed
|
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
- learning_rate: 1e-05
|
67 |
-
- train_batch_size:
|
68 |
-
- eval_batch_size:
|
69 |
- seed: 42
|
70 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
- lr_scheduler_type: linear
|
@@ -73,23 +74,23 @@ The following hyperparameters were used during training:
|
|
73 |
|
74 |
### Training results
|
75 |
|
76 |
-
| Training Loss | Epoch
|
77 |
-
|
78 |
-
| No log | 3.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
|
89 |
|
90 |
### Framework versions
|
91 |
|
92 |
-
- Transformers 4.
|
93 |
- Pytorch 2.4.0+cu118
|
94 |
- Datasets 2.21.0
|
95 |
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
base_model: layoutlmv3
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
22 |
metrics:
|
23 |
- name: Precision
|
24 |
type: precision
|
25 |
+
value: 0.9587155963302753
|
26 |
- name: Recall
|
27 |
type: recall
|
28 |
+
value: 0.9736024844720497
|
29 |
- name: F1
|
30 |
type: f1
|
31 |
+
value: 0.9661016949152543
|
32 |
- name: Accuracy
|
33 |
type: accuracy
|
34 |
+
value: 0.9656196943972836
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
41 |
|
42 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.2067
|
45 |
+
- Precision: 0.9587
|
46 |
+
- Recall: 0.9736
|
47 |
+
- F1: 0.9661
|
48 |
+
- Accuracy: 0.9656
|
49 |
|
50 |
## Model description
|
51 |
|
|
|
65 |
|
66 |
The following hyperparameters were used during training:
|
67 |
- learning_rate: 1e-05
|
68 |
+
- train_batch_size: 12
|
69 |
+
- eval_batch_size: 12
|
70 |
- seed: 42
|
71 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
- lr_scheduler_type: linear
|
|
|
74 |
|
75 |
### Training results
|
76 |
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
+
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
+
| No log | 3.7313 | 250 | 0.6302 | 0.8384 | 0.8742 | 0.8559 | 0.8633 |
|
80 |
+
| 1.0061 | 7.4627 | 500 | 0.3168 | 0.9144 | 0.9457 | 0.9298 | 0.9372 |
|
81 |
+
| 1.0061 | 11.1940 | 750 | 0.2460 | 0.9444 | 0.9620 | 0.9531 | 0.9533 |
|
82 |
+
| 0.1885 | 14.9254 | 1000 | 0.2109 | 0.9534 | 0.9689 | 0.9611 | 0.9622 |
|
83 |
+
| 0.1885 | 18.6567 | 1250 | 0.2030 | 0.9571 | 0.9705 | 0.9638 | 0.9618 |
|
84 |
+
| 0.0721 | 22.3881 | 1500 | 0.1985 | 0.9562 | 0.9666 | 0.9614 | 0.9626 |
|
85 |
+
| 0.0721 | 26.1194 | 1750 | 0.2002 | 0.9557 | 0.9705 | 0.9630 | 0.9656 |
|
86 |
+
| 0.04 | 29.8507 | 2000 | 0.2086 | 0.9579 | 0.9720 | 0.9649 | 0.9643 |
|
87 |
+
| 0.04 | 33.5821 | 2250 | 0.2032 | 0.9587 | 0.9736 | 0.9661 | 0.9660 |
|
88 |
+
| 0.0313 | 37.3134 | 2500 | 0.2067 | 0.9587 | 0.9736 | 0.9661 | 0.9656 |
|
89 |
|
90 |
|
91 |
### Framework versions
|
92 |
|
93 |
+
- Transformers 4.44.2
|
94 |
- Pytorch 2.4.0+cu118
|
95 |
- Datasets 2.21.0
|
96 |
- Tokenizers 0.19.1
|