layoutlmv3-base-cord2

This model is a fine-tuned version of microsoft/layoutlmv3-base on the mp-02/cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1856
  • Precision: 0.9467
  • Recall: 0.9614
  • F1: 0.9540
  • Accuracy: 0.9611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 100 1.2612 0.6788 0.7629 0.7184 0.7685
No log 2.0 200 0.5621 0.8674 0.8802 0.8738 0.8916
No log 3.0 300 0.3639 0.8846 0.9114 0.8978 0.9186
No log 4.0 400 0.3197 0.9153 0.9393 0.9271 0.9410
0.8719 5.0 500 0.2304 0.9357 0.9549 0.9452 0.9543
0.8719 6.0 600 0.2069 0.9389 0.9573 0.9480 0.9556
0.8719 7.0 700 0.2081 0.9459 0.9606 0.9532 0.9593
0.8719 8.0 800 0.1901 0.9532 0.9688 0.9609 0.9666
0.8719 9.0 900 0.1559 0.9515 0.9647 0.9580 0.9671
0.136 10.0 1000 0.1856 0.9467 0.9614 0.9540 0.9611
0.136 11.0 1100 0.2020 0.9537 0.9631 0.9584 0.9629
0.136 12.0 1200 0.1908 0.9552 0.9631 0.9592 0.9620

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
10
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mp-02/layoutlmv3-base-cord2

Finetuned
(219)
this model

Dataset used to train mp-02/layoutlmv3-base-cord2

Evaluation results