File size: 4,494 Bytes
98738d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# ############################################################################
# Model: E2E ASR with attention-based ASR
# Encoder: CRDNN model
# Decoder: GRU + beamsearch + RNNLM
# Tokens: BPE with unigram
# Authors:  Ju-Chieh Chou, Mirco Ravanelli, Abdel Heba, Peter Plantinga 2020
# ############################################################################


# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 40

# Model parameters
activation: !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 2
cnn_channels: (128, 256)
inter_layer_pooling_size: (2, 2)
cnn_kernelsize: (3, 3)
time_pooling_size: 4
rnn_class: !name:speechbrain.nnet.RNN.LSTM
rnn_layers: 4
rnn_neurons: 1024
rnn_bidirectional: True
dnn_blocks: 2
dnn_neurons: 512
emb_size: 128
dec_neurons: 1024
output_neurons: 1000  # index(blank/eos/bos) = 0
blank_index: 0

# Decoding parameters
bos_index: 0
eos_index: 0
min_decode_ratio: 0.0
max_decode_ratio: 1.0
beam_size: 80
eos_threshold: 1.5
using_max_attn_shift: True
max_attn_shift: 240
lm_weight: 0.50
coverage_penalty: 1.5
temperature: 1.25
temperature_lm: 1.25

normalizer: !new:speechbrain.processing.features.InputNormalization
    norm_type: global

compute_features: !new:speechbrain.lobes.features.Fbank
    sample_rate: !ref <sample_rate>
    n_fft: !ref <n_fft>
    n_mels: !ref <n_mels>

enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
    input_shape: [null, null, !ref <n_mels>]
    activation: !ref <activation>
    dropout: !ref <dropout>
    cnn_blocks: !ref <cnn_blocks>
    cnn_channels: !ref <cnn_channels>
    cnn_kernelsize: !ref <cnn_kernelsize>
    inter_layer_pooling_size: !ref <inter_layer_pooling_size>
    time_pooling: True
    using_2d_pooling: False
    time_pooling_size: !ref <time_pooling_size>
    rnn_class: !ref <rnn_class>
    rnn_layers: !ref <rnn_layers>
    rnn_neurons: !ref <rnn_neurons>
    rnn_bidirectional: !ref <rnn_bidirectional>
    rnn_re_init: True
    dnn_blocks: !ref <dnn_blocks>
    dnn_neurons: !ref <dnn_neurons>

emb: !new:speechbrain.nnet.embedding.Embedding
    num_embeddings: !ref <output_neurons>
    embedding_dim: !ref <emb_size>

dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
    enc_dim: !ref <dnn_neurons>
    input_size: !ref <emb_size>
    rnn_type: gru
    attn_type: location
    hidden_size: !ref <dec_neurons>
    attn_dim: 1024
    num_layers: 1
    scaling: 1.0
    channels: 10
    kernel_size: 100
    re_init: True
    dropout: !ref <dropout>

ctc_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <dnn_neurons>
    n_neurons: !ref <output_neurons>

seq_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <dec_neurons>
    n_neurons: !ref <output_neurons>

log_softmax: !new:speechbrain.nnet.activations.Softmax
    apply_log: True

lm_model: !new:speechbrain.lobes.models.RNNLM.RNNLM
    output_neurons: !ref <output_neurons>
    embedding_dim: !ref <emb_size>
    activation: !name:torch.nn.LeakyReLU
    dropout: 0.0
    rnn_layers: 2
    rnn_neurons: 2048
    dnn_blocks: 1
    dnn_neurons: 512
    return_hidden: True  # For inference

tokenizer: !new:sentencepiece.SentencePieceProcessor

asr_model: !new:torch.nn.ModuleList
    - [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]

# We compose the inference (encoder) pipeline.
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
    input_shape: [null, null, !ref <n_mels>]
    compute_features: !ref <compute_features>
    normalize: !ref <normalizer>
    model: !ref <enc>

decoder: !new:speechbrain.decoders.S2SRNNBeamSearchLM
    embedding: !ref <emb>
    decoder: !ref <dec>
    linear: !ref <seq_lin>
    language_model: !ref <lm_model>
    bos_index: !ref <bos_index>
    eos_index: !ref <eos_index>
    min_decode_ratio: !ref <min_decode_ratio>
    max_decode_ratio: !ref <max_decode_ratio>
    beam_size: !ref <beam_size>
    eos_threshold: !ref <eos_threshold>
    using_max_attn_shift: !ref <using_max_attn_shift>
    max_attn_shift: !ref <max_attn_shift>
    coverage_penalty: !ref <coverage_penalty>
    lm_weight: !ref <lm_weight>
    temperature: !ref <temperature>
    temperature_lm: !ref <temperature_lm>


modules:
    normalizer: !ref <normalizer>
    encoder: !ref <encoder>
    decoder: !ref <decoder>
    lm_model: !ref <lm_model>

pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
    loadables:
        normalizer: !ref <normalizer>
        asr: !ref <asr_model>
        lm: !ref <lm_model>
        tokenizer: !ref <tokenizer>