Create hyperparams.yaml
Browse files- hyperparams.yaml +157 -0
hyperparams.yaml
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ############################################################################
|
2 |
+
# Model: E2E ASR with attention-based ASR
|
3 |
+
# Encoder: CRDNN model
|
4 |
+
# Decoder: GRU + beamsearch + RNNLM
|
5 |
+
# Tokens: BPE with unigram
|
6 |
+
# Authors: Ju-Chieh Chou, Mirco Ravanelli, Abdel Heba, Peter Plantinga 2020
|
7 |
+
# ############################################################################
|
8 |
+
|
9 |
+
|
10 |
+
# Feature parameters
|
11 |
+
sample_rate: 16000
|
12 |
+
n_fft: 400
|
13 |
+
n_mels: 40
|
14 |
+
|
15 |
+
# Model parameters
|
16 |
+
activation: !name:torch.nn.LeakyReLU
|
17 |
+
dropout: 0.15
|
18 |
+
cnn_blocks: 2
|
19 |
+
cnn_channels: (128, 256)
|
20 |
+
inter_layer_pooling_size: (2, 2)
|
21 |
+
cnn_kernelsize: (3, 3)
|
22 |
+
time_pooling_size: 4
|
23 |
+
rnn_class: !name:speechbrain.nnet.RNN.LSTM
|
24 |
+
rnn_layers: 4
|
25 |
+
rnn_neurons: 1024
|
26 |
+
rnn_bidirectional: True
|
27 |
+
dnn_blocks: 2
|
28 |
+
dnn_neurons: 512
|
29 |
+
emb_size: 128
|
30 |
+
dec_neurons: 1024
|
31 |
+
output_neurons: 1000 # index(blank/eos/bos) = 0
|
32 |
+
blank_index: 0
|
33 |
+
|
34 |
+
# Decoding parameters
|
35 |
+
bos_index: 0
|
36 |
+
eos_index: 0
|
37 |
+
min_decode_ratio: 0.0
|
38 |
+
max_decode_ratio: 1.0
|
39 |
+
beam_size: 80
|
40 |
+
eos_threshold: 1.5
|
41 |
+
using_max_attn_shift: True
|
42 |
+
max_attn_shift: 240
|
43 |
+
lm_weight: 0.50
|
44 |
+
coverage_penalty: 1.5
|
45 |
+
temperature: 1.25
|
46 |
+
temperature_lm: 1.25
|
47 |
+
|
48 |
+
normalizer: !new:speechbrain.processing.features.InputNormalization
|
49 |
+
norm_type: global
|
50 |
+
|
51 |
+
compute_features: !new:speechbrain.lobes.features.Fbank
|
52 |
+
sample_rate: !ref <sample_rate>
|
53 |
+
n_fft: !ref <n_fft>
|
54 |
+
n_mels: !ref <n_mels>
|
55 |
+
|
56 |
+
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
|
57 |
+
input_shape: [null, null, !ref <n_mels>]
|
58 |
+
activation: !ref <activation>
|
59 |
+
dropout: !ref <dropout>
|
60 |
+
cnn_blocks: !ref <cnn_blocks>
|
61 |
+
cnn_channels: !ref <cnn_channels>
|
62 |
+
cnn_kernelsize: !ref <cnn_kernelsize>
|
63 |
+
inter_layer_pooling_size: !ref <inter_layer_pooling_size>
|
64 |
+
time_pooling: True
|
65 |
+
using_2d_pooling: False
|
66 |
+
time_pooling_size: !ref <time_pooling_size>
|
67 |
+
rnn_class: !ref <rnn_class>
|
68 |
+
rnn_layers: !ref <rnn_layers>
|
69 |
+
rnn_neurons: !ref <rnn_neurons>
|
70 |
+
rnn_bidirectional: !ref <rnn_bidirectional>
|
71 |
+
rnn_re_init: True
|
72 |
+
dnn_blocks: !ref <dnn_blocks>
|
73 |
+
dnn_neurons: !ref <dnn_neurons>
|
74 |
+
|
75 |
+
emb: !new:speechbrain.nnet.embedding.Embedding
|
76 |
+
num_embeddings: !ref <output_neurons>
|
77 |
+
embedding_dim: !ref <emb_size>
|
78 |
+
|
79 |
+
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
|
80 |
+
enc_dim: !ref <dnn_neurons>
|
81 |
+
input_size: !ref <emb_size>
|
82 |
+
rnn_type: gru
|
83 |
+
attn_type: location
|
84 |
+
hidden_size: !ref <dec_neurons>
|
85 |
+
attn_dim: 1024
|
86 |
+
num_layers: 1
|
87 |
+
scaling: 1.0
|
88 |
+
channels: 10
|
89 |
+
kernel_size: 100
|
90 |
+
re_init: True
|
91 |
+
dropout: !ref <dropout>
|
92 |
+
|
93 |
+
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
94 |
+
input_size: !ref <dnn_neurons>
|
95 |
+
n_neurons: !ref <output_neurons>
|
96 |
+
|
97 |
+
seq_lin: !new:speechbrain.nnet.linear.Linear
|
98 |
+
input_size: !ref <dec_neurons>
|
99 |
+
n_neurons: !ref <output_neurons>
|
100 |
+
|
101 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
102 |
+
apply_log: True
|
103 |
+
|
104 |
+
lm_model: !new:speechbrain.lobes.models.RNNLM.RNNLM
|
105 |
+
output_neurons: !ref <output_neurons>
|
106 |
+
embedding_dim: !ref <emb_size>
|
107 |
+
activation: !name:torch.nn.LeakyReLU
|
108 |
+
dropout: 0.0
|
109 |
+
rnn_layers: 2
|
110 |
+
rnn_neurons: 2048
|
111 |
+
dnn_blocks: 1
|
112 |
+
dnn_neurons: 512
|
113 |
+
return_hidden: True # For inference
|
114 |
+
|
115 |
+
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
116 |
+
|
117 |
+
asr_model: !new:torch.nn.ModuleList
|
118 |
+
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]
|
119 |
+
|
120 |
+
# We compose the inference (encoder) pipeline.
|
121 |
+
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
|
122 |
+
input_shape: [null, null, !ref <n_mels>]
|
123 |
+
compute_features: !ref <compute_features>
|
124 |
+
normalize: !ref <normalizer>
|
125 |
+
model: !ref <enc>
|
126 |
+
|
127 |
+
decoder: !new:speechbrain.decoders.S2SRNNBeamSearchLM
|
128 |
+
embedding: !ref <emb>
|
129 |
+
decoder: !ref <dec>
|
130 |
+
linear: !ref <seq_lin>
|
131 |
+
language_model: !ref <lm_model>
|
132 |
+
bos_index: !ref <bos_index>
|
133 |
+
eos_index: !ref <eos_index>
|
134 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
135 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
136 |
+
beam_size: !ref <beam_size>
|
137 |
+
eos_threshold: !ref <eos_threshold>
|
138 |
+
using_max_attn_shift: !ref <using_max_attn_shift>
|
139 |
+
max_attn_shift: !ref <max_attn_shift>
|
140 |
+
coverage_penalty: !ref <coverage_penalty>
|
141 |
+
lm_weight: !ref <lm_weight>
|
142 |
+
temperature: !ref <temperature>
|
143 |
+
temperature_lm: !ref <temperature_lm>
|
144 |
+
|
145 |
+
|
146 |
+
modules:
|
147 |
+
normalizer: !ref <normalizer>
|
148 |
+
encoder: !ref <encoder>
|
149 |
+
decoder: !ref <decoder>
|
150 |
+
lm_model: !ref <lm_model>
|
151 |
+
|
152 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
153 |
+
loadables:
|
154 |
+
normalizer: !ref <normalizer>
|
155 |
+
asr: !ref <asr_model>
|
156 |
+
lm: !ref <lm_model>
|
157 |
+
tokenizer: !ref <tokenizer>
|