File size: 1,876 Bytes
468f805 d012d15 468f805 d012d15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
library_name: transformers
base_model: motheecreator/ViT-GPT2-Image_Captioning_model
tags:
- generated_from_trainer
- image-to-text
metrics:
- bleu
model-index:
- name: ViT-GPT2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ViT-GPT2
This model is a fine-tuned version of [motheecreator/ViT-GPT2-Image_Captioning_model](https://huggingface.co/motheecreator/ViT-GPT2-Image_Captioning_model) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1879
- Rouge2 Precision: None
- Rouge2 Recall: None
- Rouge2 Fmeasure: 0.1506
- Bleu: 9.3133
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Bleu |
|:-------------:|:------:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|:------:|
| 2.2959 | 0.9993 | 1171 | 2.2239 | None | None | 0.1474 | 8.9628 |
| 2.1491 | 1.9985 | 2342 | 2.1879 | None | None | 0.1506 | 9.3133 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1 |