motheecreator
commited on
Upload README (1).md
Browse files- README (1).md +67 -0
README (1).md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: motheecreator/ViT-GPT2-Image_Captioning_model
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- bleu
|
8 |
+
model-index:
|
9 |
+
- name: ViT-GPT2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# ViT-GPT2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [motheecreator/ViT-GPT2-Image_Captioning_model](https://huggingface.co/motheecreator/ViT-GPT2-Image_Captioning_model) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.1879
|
21 |
+
- Rouge2 Precision: None
|
22 |
+
- Rouge2 Recall: None
|
23 |
+
- Rouge2 Fmeasure: 0.1506
|
24 |
+
- Bleu: 9.3133
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 8
|
48 |
+
- total_train_batch_size: 256
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 2
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Bleu |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|:------:|
|
58 |
+
| 2.2959 | 0.9993 | 1171 | 2.2239 | None | None | 0.1474 | 8.9628 |
|
59 |
+
| 2.1491 | 1.9985 | 2342 | 2.1879 | None | None | 0.1506 | 9.3133 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.44.2
|
65 |
+
- Pytorch 2.4.0
|
66 |
+
- Datasets 3.0.0
|
67 |
+
- Tokenizers 0.19.1
|