ViT-GPT2

This model is a fine-tuned version of motheecreator/ViT-GPT2-Image_Captioning_model on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1879
  • Rouge2 Precision: None
  • Rouge2 Recall: None
  • Rouge2 Fmeasure: 0.1506
  • Bleu: 9.3133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure Bleu
2.2959 0.9993 1171 2.2239 None None 0.1474 8.9628
2.1491 1.9985 2342 2.1879 None None 0.1506 9.3133

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
239M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for motheecreator/ViT-GPT2

Finetuned
(2)
this model