Edit model card

General Information

This is a bert-base-cased, binary classification model, fine-tuned to classify a given sentence as containing advertising content or not. It leverages previous-sentence context to make more accurate predictions. The model is used in the paper 'Leveraging multimodal content for podcast summarization' published at ACM SAC 2022.

Usage:

from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained('morenolq/spotify-podcast-advertising-classification')
tokenizer = AutoTokenizer.from_pretrained('morenolq/spotify-podcast-advertising-classification')

desc_sentences = ["Sentence 1", "Sentence 2", "Sentence 3"]
for i, s in enumerate(desc_sentences): 
    if i==0:
        context = "__START__"
    else:
        context = desc_sentences[i-1] 
    out = tokenizer(context, text, padding = "max_length",
                        max_length = 256,
                        truncation=True,
                        return_attention_mask=True,
                        return_tensors = 'pt')
    outputs = model(**out)
    print (f"{s},{outputs}")

The manually annotated data, used for model fine-tuning are available here

Hereafter is the classification report of the model evaluation on the test split:

              precision    recall  f1-score   support

           0       0.95      0.93      0.94       256
           1       0.88      0.91      0.89       140

    accuracy                           0.92       396
   macro avg       0.91      0.92      0.92       396
weighted avg       0.92      0.92      0.92       396

If you find it useful, please cite the following paper:

@inproceedings{10.1145/3477314.3507106,
    author = {Vaiani, Lorenzo and La Quatra, Moreno and Cagliero, Luca and Garza, Paolo},
    title = {Leveraging Multimodal Content for Podcast Summarization},
    year = {2022},
    isbn = {9781450387132},
    publisher = {Association for Computing Machinery},
    address = {New York, NY, USA},
    url = {https://doi.org/10.1145/3477314.3507106},
    doi = {10.1145/3477314.3507106},
    booktitle = {Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing},
    pages = {863–870},
    numpages = {8},
    keywords = {multimodal learning, multimodal features fusion, extractive summarization, deep learning, podcast summarization},
    location = {Virtual Event},
    series = {SAC '22}
}
Downloads last month
73
Hosted inference API
Text Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.