We finetuned huggyllama/llama-7b on tatsu-lab/alpaca Dataset for 5 epochs or ~ 25,000 steps using MonsterAPI no-code LLM finetuner.

This dataset is HuggingFaceH4/tatsu-lab/alpaca unfiltered, removing 36 instances of blatant alignment.

The finetuning session got completed in 4 hours and costed us only $16 for the entire finetuning run!

Hyperparameters & Run details:

  • Model Path: huggyllama/llama-7b
  • Dataset: tatsu-lab/alpaca
  • Learning rate: 0.0003
  • Number of epochs: 5
  • Data split: Training: 90% / Validation: 10%
  • Gradient accumulation steps: 1

license: apache-2.0

Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train monsterapi/llama7B_alpaca-lora