PEFT
code
instruct
code-llama
Files changed (1) hide show
  1. README.md +38 -3
README.md CHANGED
@@ -1,9 +1,44 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
3
  ---
4
- ## Training procedure
5
 
6
- ### Framework versions
7
 
 
8
 
9
- - PEFT 0.5.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ tags:
4
+ - code
5
+ - instruct
6
+ - code-llama
7
+ datasets:
8
+ - ehartford/dolphin-2.5-mixtral-8x7b
9
+ base_model: codellama/CodeLlama-7b-hf
10
+ license: apache-2.0
11
  ---
 
12
 
13
+ ### Finetuning Overview:
14
 
15
+ **Model Used:** codellama/CodeLlama-7b-hf
16
 
17
+ **Dataset:** ehartford/dolphin-2.5-mixtral-8x7b
18
+
19
+ #### Dataset Insights:
20
+
21
+ [No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
22
+
23
+ #### Finetuning Details:
24
+
25
+ With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:
26
+
27
+ - Was achieved with great cost-effectiveness.
28
+ - Completed in a total duration of 1h 15m 3s for 2 epochs using an A6000 48GB GPU.
29
+ - Costed `$2.525` for the entire 2 epochs.
30
+
31
+ #### Hyperparameters & Additional Details:
32
+
33
+ - **Epochs:** 2
34
+ - **Cost Per Epoch:** $1.26
35
+ - **Total Finetuning Cost:** $2.525
36
+ - **Model Path:** codellama/CodeLlama-7b-hf
37
+ - **Learning Rate:** 0.0002
38
+ - **Data Split:** 100% train
39
+ - **Gradient Accumulation Steps:** 64
40
+ - **lora r:** 64
41
+ - **lora alpha:** 16
42
+
43
+ ---
44
+ license: apache-2.0