Update README.md
#1
by
souvik0306
- opened
README.md
CHANGED
@@ -1,9 +1,44 @@
|
|
1 |
---
|
2 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
-
## Training procedure
|
5 |
|
6 |
-
###
|
7 |
|
|
|
8 |
|
9 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
+
tags:
|
4 |
+
- code
|
5 |
+
- instruct
|
6 |
+
- code-llama
|
7 |
+
datasets:
|
8 |
+
- ehartford/dolphin-2.5-mixtral-8x7b
|
9 |
+
base_model: codellama/CodeLlama-7b-hf
|
10 |
+
license: apache-2.0
|
11 |
---
|
|
|
12 |
|
13 |
+
### Finetuning Overview:
|
14 |
|
15 |
+
**Model Used:** codellama/CodeLlama-7b-hf
|
16 |
|
17 |
+
**Dataset:** ehartford/dolphin-2.5-mixtral-8x7b
|
18 |
+
|
19 |
+
#### Dataset Insights:
|
20 |
+
|
21 |
+
[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
|
22 |
+
|
23 |
+
#### Finetuning Details:
|
24 |
+
|
25 |
+
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:
|
26 |
+
|
27 |
+
- Was achieved with great cost-effectiveness.
|
28 |
+
- Completed in a total duration of 1h 15m 3s for 2 epochs using an A6000 48GB GPU.
|
29 |
+
- Costed `$2.525` for the entire 2 epochs.
|
30 |
+
|
31 |
+
#### Hyperparameters & Additional Details:
|
32 |
+
|
33 |
+
- **Epochs:** 2
|
34 |
+
- **Cost Per Epoch:** $1.26
|
35 |
+
- **Total Finetuning Cost:** $2.525
|
36 |
+
- **Model Path:** codellama/CodeLlama-7b-hf
|
37 |
+
- **Learning Rate:** 0.0002
|
38 |
+
- **Data Split:** 100% train
|
39 |
+
- **Gradient Accumulation Steps:** 64
|
40 |
+
- **lora r:** 64
|
41 |
+
- **lora alpha:** 16
|
42 |
+
|
43 |
+
---
|
44 |
+
license: apache-2.0
|