monai
medical

Description

Detailed whole brain segmentation is an essential quantitative technique in medical image analysis, which provides a non-invasive way of measuring brain regions from a clinical acquired structural magnetic resonance imaging (MRI). We provide the pre-trained model for training and inferencing whole brain segmentation with 133 structures. Training pipeline is provided to support active learning in MONAI Label and training with bundle.

A tutorial and release of model for whole brain segmentation using the 3D transformer-based segmentation model UNEST.

Authors: Xin Yu (xin.yu@vanderbilt.edu)

Yinchi Zhou (yinchi.zhou@vanderbilt.edu) | Yucheng Tang (yuchengt@nvidia.com)

-------------------------------------------------------------------------------------


Fig.1 - The demonstration of T1w MRI images registered in MNI space and the whole brain segmentation labels with 133 classes

Model Overview

A pre-trained UNEST base model [1] for volumetric (3D) whole brain segmentation with T1w MR images. To leverage information across embedded sequences, ”shifted window” transformers are proposed for dense predictions and modeling multi-scale features. However, these attempts that aim to complicate the self-attention range often yield high computation complexity and data inefficiency. Inspired by the aggregation function in the nested ViT, we propose a new design of a 3D U-shape medical segmentation model with Nested Transformers (UNesT) hierarchically with the 3D block aggregation function, that learn locality behaviors for small structures or small dataset. This design retains the original global self-attention mechanism and achieves information communication across patches by stacking transformer encoders hierarchically.


Fig.2 - The network architecture of UNEST Base model

Data

The training data is from the Vanderbilt University and Vanderbilt University Medical Center with public released OASIS and CANDI datsets. Training and testing data are MRI T1-weighted (T1w) 3D volumes coming from 3 different sites. There are a total of 133 classes in the whole brain segmentation task. Among 50 T1w MRI scans from Open Access Series on Imaging Studies (OASIS) (Marcus et al., 2007) dataset, 45 scans are used for training and the other 5 for validation. The testing cohort contains Colin27 T1w scan (Aubert-Broche et al., 2006) and 13 T1w MRI scans from the Child and Adolescent Neuro Development Initiative (CANDI) (Kennedy et al., 2012). All data are registered to the MNI space using the MNI305 (Evans et al., 1993) template and preprocessed follow the method in (Huo et al., 2019). Input images are randomly cropped to the size of 96 × 96 × 96.

Important

The brain MRI images for training are registered to Affine registration from the target image to the MNI305 template using NiftyReg. The data should be in the MNI305 space before inference.

If your images are already in MNI space, skip the registration step.

You could use any resitration tool to register image to MNI space. Here is an example using ants. Registration to MNI Space: Sample suggestion. E.g., use ANTS or other tools for registering T1 MRI image to MNI305 Space.

pip install antspyx

#Sample ANTS registration

import ants
import sys
import os

fixed_image = ants.image_read('<fixed_image_path>')
moving_image = ants.image_read('<moving_image_path>')
transform = ants.registration(fixed_image,moving_image,'Affine')

reg3t = ants.apply_transforms(fixed_image,moving_image,transform['fwdtransforms'][0])
ants.image_write(reg3t,output_image_path)

Training configuration

The training and inference was performed with at least one 24GB-memory GPU.

Actual Model Input: 96 x 96 x 96

Input and output formats

Input: 1 channel T1w MRI image in MNI305 Space.

commands example

Download trained checkpoint model to ./model/model.pt:

Add scripts component: To run the workflow with customized components, PYTHONPATH should be revised to include the path to the customized component:

export PYTHONPATH=$PYTHONPATH: '<path to the bundle root dir>/'

Execute Training:

python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf

Execute inference:

python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf

More examples output


Fig.3 - The output prediction comparison with variant and ground truth

Training/Validation Benchmarking

A graph showing the training accuracy for fine-tuning 600 epochs.


With 10 fine-tuned labels, the training process converges fast.

Complete ROI of the whole brain segmentation

133 brain structures are segmented.

#1 #2 #3 #4
0: background 1 : 3rd-Ventricle 2 : 4th-Ventricle 3 : Right-Accumbens-Area
4 : Left-Accumbens-Area 5 : Right-Amygdala 6 : Left-Amygdala 7 : Brain-Stem
8 : Right-Caudate 9 : Left-Caudate 10 : Right-Cerebellum-Exterior 11 : Left-Cerebellum-Exterior
12 : Right-Cerebellum-White-Matter 13 : Left-Cerebellum-White-Matter 14 : Right-Cerebral-White-Matter 15 : Left-Cerebral-White-Matter
16 : Right-Hippocampus 17 : Left-Hippocampus 18 : Right-Inf-Lat-Vent 19 : Left-Inf-Lat-Vent
20 : Right-Lateral-Ventricle 21 : Left-Lateral-Ventricle 22 : Right-Pallidum 23 : Left-Pallidum
24 : Right-Putamen 25 : Left-Putamen 26 : Right-Thalamus-Proper 27 : Left-Thalamus-Proper
28 : Right-Ventral-DC 29 : Left-Ventral-DC 30 : Cerebellar-Vermal-Lobules-I-V 31 : Cerebellar-Vermal-Lobules-VI-VII
32 : Cerebellar-Vermal-Lobules-VIII-X 33 : Left-Basal-Forebrain 34 : Right-Basal-Forebrain 35 : Right-ACgG--anterior-cingulate-gyrus
36 : Left-ACgG--anterior-cingulate-gyrus 37 : Right-AIns--anterior-insula 38 : Left-AIns--anterior-insula 39 : Right-AOrG--anterior-orbital-gyrus
40 : Left-AOrG--anterior-orbital-gyrus 41 : Right-AnG---angular-gyrus 42 : Left-AnG---angular-gyrus 43 : Right-Calc--calcarine-cortex
44 : Left-Calc--calcarine-cortex 45 : Right-CO----central-operculum 46 : Left-CO----central-operculum 47 : Right-Cun---cuneus
48 : Left-Cun---cuneus 49 : Right-Ent---entorhinal-area 50 : Left-Ent---entorhinal-area 51 : Right-FO----frontal-operculum
52 : Left-FO----frontal-operculum 53 : Right-FRP---frontal-pole 54 : Left-FRP---frontal-pole 55 : Right-FuG---fusiform-gyrus
56 : Left-FuG---fusiform-gyrus 57 : Right-GRe---gyrus-rectus 58 : Left-GRe---gyrus-rectus 59 : Right-IOG---inferior-occipital-gyrus ,
60 : Left-IOG---inferior-occipital-gyrus 61 : Right-ITG---inferior-temporal-gyrus 62 : Left-ITG---inferior-temporal-gyrus 63 : Right-LiG---lingual-gyrus
64 : Left-LiG---lingual-gyrus 65 : Right-LOrG--lateral-orbital-gyrus 66 : Left-LOrG--lateral-orbital-gyrus 67 : Right-MCgG--middle-cingulate-gyrus
68 : Left-MCgG--middle-cingulate-gyrus 69 : Right-MFC---medial-frontal-cortex 70 : Left-MFC---medial-frontal-cortex 71 : Right-MFG---middle-frontal-gyrus
72 : Left-MFG---middle-frontal-gyrus 73 : Right-MOG---middle-occipital-gyrus 74 : Left-MOG---middle-occipital-gyrus 75 : Right-MOrG--medial-orbital-gyrus
76 : Left-MOrG--medial-orbital-gyrus 77 : Right-MPoG--postcentral-gyrus 78 : Left-MPoG--postcentral-gyrus 79 : Right-MPrG--precentral-gyrus
80 : Left-MPrG--precentral-gyrus 81 : Right-MSFG--superior-frontal-gyrus 82 : Left-MSFG--superior-frontal-gyrus 83 : Right-MTG---middle-temporal-gyrus
84 : Left-MTG---middle-temporal-gyrus 85 : Right-OCP---occipital-pole 86 : Left-OCP---occipital-pole 87 : Right-OFuG--occipital-fusiform-gyrus
88 : Left-OFuG--occipital-fusiform-gyrus 89 : Right-OpIFG-opercular-part-of-the-IFG 90 : Left-OpIFG-opercular-part-of-the-IFG 91 : Right-OrIFG-orbital-part-of-the-IFG
92 : Left-OrIFG-orbital-part-of-the-IFG 93 : Right-PCgG--posterior-cingulate-gyrus 94 : Left-PCgG--posterior-cingulate-gyrus 95 : Right-PCu---precuneus
96 : Left-PCu---precuneus 97 : Right-PHG---parahippocampal-gyrus 98 : Left-PHG---parahippocampal-gyrus 99 : Right-PIns--posterior-insula
100 : Left-PIns--posterior-insula 101 : Right-PO----parietal-operculum 102 : Left-PO----parietal-operculum 103 : Right-PoG---postcentral-gyrus
104 : Left-PoG---postcentral-gyrus 105 : Right-POrG--posterior-orbital-gyrus 106 : Left-POrG--posterior-orbital-gyrus 107 : Right-PP----planum-polare
108 : Left-PP----planum-polare 109 : Right-PrG---precentral-gyrus 110 : Left-PrG---precentral-gyrus 111 : Right-PT----planum-temporale
112 : Left-PT----planum-temporale 113 : Right-SCA---subcallosal-area 114 : Left-SCA---subcallosal-area 115 : Right-SFG---superior-frontal-gyrus
116 : Left-SFG---superior-frontal-gyrus 117 : Right-SMC---supplementary-motor-cortex 118 : Left-SMC---supplementary-motor-cortex 119 : Right-SMG---supramarginal-gyrus
120 : Left-SMG---supramarginal-gyrus 121 : Right-SOG---superior-occipital-gyrus 122 : Left-SOG---superior-occipital-gyrus 123 : Right-SPL---superior-parietal-lobule
124 : Left-SPL---superior-parietal-lobule 125 : Right-STG---superior-temporal-gyrus 126 : Left-STG---superior-temporal-gyrus 127 : Right-TMP---temporal-pole
128 : Left-TMP---temporal-pole 129 : Right-TrIFG-triangular-part-of-the-IFG 130 : Left-TrIFG-triangular-part-of-the-IFG 131 : Right-TTG---transverse-temporal-gyrus
132 : Left-TTG---transverse-temporal-gyrus

Bundle Integration in MONAI Lable

The inference and training pipleine can be easily used by the MONAI Label server and 3D Slicer for fast labeling T1w MRI images in MNI space.


Disclaimer

This is an example, not to be used for diagnostic purposes.

References

[1] Yu, Xin, Yinchi Zhou, Yucheng Tang et al. Characterizing Renal Structures with 3D Block Aggregate Transformers. arXiv preprint arXiv:2203.02430 (2022). https://arxiv.org/pdf/2203.02430.pdf

[2] Zizhao Zhang et al. Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding. AAAI Conference on Artificial Intelligence (AAAI) 2022

[3] Huo, Yuankai, et al. 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage 194 (2019): 105-119.

License

Copyright (c) MONAI Consortium

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .