monai
medical
File size: 4,882 Bytes
ef02275
 
11a1866
ef02275
11a1866
31dc790
0b6e1fc
42b95af
ab15bef
64fd9ca
76df71c
 
ba7680b
251565d
bbaff61
058ac3a
95e82df
730ac49
94d37cc
93534f3
1cd32b1
e81f69d
25f3d4f
08f1d74
b018a29
b05ccb0
ef02275
 
 
11a1866
76df71c
 
ef02275
76df71c
 
ef02275
 
bbaff61
ef02275
 
 
 
 
 
 
 
 
 
42b95af
ef02275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
    "version": "0.5.0",
    "changelog": {
        "0.5.0": "fix the wrong GPU index issue of multi-node",
        "0.4.9": "remove error dollar symbol in readme",
        "0.4.8": "add RAM usage with CacheDataset",
        "0.4.7": "deterministic retrain benchmark",
        "0.4.6": "fix mgpu finalize issue",
        "0.4.5": "enable deterministic training",
        "0.4.4": "update numbers",
        "0.4.3": "adapt to BundleWorkflow interface",
        "0.4.2": "fix train params of use_checkpoint",
        "0.4.1": "update params to supprot torch.jit.trace torchscript conversion",
        "0.4.0": "add name tag",
        "0.3.9": "use ITKreader to avoid mass logs at image loading",
        "0.3.8": "restructure readme to match updated template",
        "0.3.7": "Update metric in metadata",
        "0.3.6": "Update ckpt drive link",
        "0.3.5": "Update figure and benchmarking",
        "0.3.4": "Update figure link in readme",
        "0.3.3": "Update, verify MONAI 1.0.1 and Pytorch 1.13.0",
        "0.3.2": "enhance readme on commands example",
        "0.3.1": "fix license Copyright error",
        "0.3.0": "update license files",
        "0.2.0": "unify naming",
        "0.1.0": "complete the model package",
        "0.0.1": "initialize the model package structure"
    },
    "monai_version": "1.2.0",
    "pytorch_version": "1.13.1",
    "numpy_version": "1.22.2",
    "optional_packages_version": {
        "nibabel": "4.0.1",
        "pytorch-ignite": "0.4.9",
        "einops": "0.4.1"
    },
    "name": "Swin UNETR BTCV segmentation",
    "task": "BTCV multi-organ segmentation",
    "description": "A pre-trained model for volumetric (3D) multi-organ segmentation from CT image",
    "authors": "MONAI team",
    "copyright": "Copyright (c) MONAI Consortium",
    "data_source": "RawData.zip from https://www.synapse.org/#!Synapse:syn3193805/wiki/217752/",
    "data_type": "nibabel",
    "image_classes": "single channel data, intensity scaled to [0, 1]",
    "label_classes": "multi-channel data,0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
    "pred_classes": "14 channels OneHot data, 0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
    "eval_metrics": {
        "mean_dice": 0.82
    },
    "intended_use": "This is an example, not to be used for diagnostic purposes",
    "references": [
        "Hatamizadeh, Ali, et al. 'Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266 (2022). https://arxiv.org/abs/2201.01266.",
        "Tang, Yucheng, et al. 'Self-supervised pre-training of swin transformers for 3d medical image analysis. arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791."
    ],
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "image",
                "format": "hounsfield",
                "modality": "CT",
                "num_channels": 1,
                "spatial_shape": [
                    96,
                    96,
                    96
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "image"
                }
            }
        },
        "outputs": {
            "pred": {
                "type": "image",
                "format": "segmentation",
                "num_channels": 14,
                "spatial_shape": [
                    96,
                    96,
                    96
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "background",
                    "1": "spleen",
                    "2": "Right Kidney",
                    "3": "Left Kideny",
                    "4": "Gallbladder",
                    "5": "Esophagus",
                    "6": "Liver",
                    "7": "Stomach",
                    "8": "Aorta",
                    "9": "IVC",
                    "10": "Portal and Splenic Veins",
                    "11": "Pancreas",
                    "12": "Right adrenal gland",
                    "13": "Left adrenal gland"
                }
            }
        }
    }
}