File size: 4,882 Bytes
ef02275 11a1866 ef02275 11a1866 31dc790 0b6e1fc 42b95af ab15bef 64fd9ca 76df71c ba7680b 251565d bbaff61 058ac3a 95e82df 730ac49 94d37cc 93534f3 1cd32b1 e81f69d 25f3d4f 08f1d74 b018a29 b05ccb0 ef02275 11a1866 76df71c ef02275 76df71c ef02275 bbaff61 ef02275 42b95af ef02275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.5.0",
"changelog": {
"0.5.0": "fix the wrong GPU index issue of multi-node",
"0.4.9": "remove error dollar symbol in readme",
"0.4.8": "add RAM usage with CacheDataset",
"0.4.7": "deterministic retrain benchmark",
"0.4.6": "fix mgpu finalize issue",
"0.4.5": "enable deterministic training",
"0.4.4": "update numbers",
"0.4.3": "adapt to BundleWorkflow interface",
"0.4.2": "fix train params of use_checkpoint",
"0.4.1": "update params to supprot torch.jit.trace torchscript conversion",
"0.4.0": "add name tag",
"0.3.9": "use ITKreader to avoid mass logs at image loading",
"0.3.8": "restructure readme to match updated template",
"0.3.7": "Update metric in metadata",
"0.3.6": "Update ckpt drive link",
"0.3.5": "Update figure and benchmarking",
"0.3.4": "Update figure link in readme",
"0.3.3": "Update, verify MONAI 1.0.1 and Pytorch 1.13.0",
"0.3.2": "enhance readme on commands example",
"0.3.1": "fix license Copyright error",
"0.3.0": "update license files",
"0.2.0": "unify naming",
"0.1.0": "complete the model package",
"0.0.1": "initialize the model package structure"
},
"monai_version": "1.2.0",
"pytorch_version": "1.13.1",
"numpy_version": "1.22.2",
"optional_packages_version": {
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9",
"einops": "0.4.1"
},
"name": "Swin UNETR BTCV segmentation",
"task": "BTCV multi-organ segmentation",
"description": "A pre-trained model for volumetric (3D) multi-organ segmentation from CT image",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "RawData.zip from https://www.synapse.org/#!Synapse:syn3193805/wiki/217752/",
"data_type": "nibabel",
"image_classes": "single channel data, intensity scaled to [0, 1]",
"label_classes": "multi-channel data,0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
"pred_classes": "14 channels OneHot data, 0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
"eval_metrics": {
"mean_dice": 0.82
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Hatamizadeh, Ali, et al. 'Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266 (2022). https://arxiv.org/abs/2201.01266.",
"Tang, Yucheng, et al. 'Self-supervised pre-training of swin transformers for 3d medical image analysis. arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791."
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "hounsfield",
"modality": "CT",
"num_channels": 1,
"spatial_shape": [
96,
96,
96
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "image"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "segmentation",
"num_channels": 14,
"spatial_shape": [
96,
96,
96
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "background",
"1": "spleen",
"2": "Right Kidney",
"3": "Left Kideny",
"4": "Gallbladder",
"5": "Esophagus",
"6": "Liver",
"7": "Stomach",
"8": "Aorta",
"9": "IVC",
"10": "Portal and Splenic Veins",
"11": "Pancreas",
"12": "Right adrenal gland",
"13": "Left adrenal gland"
}
}
}
}
}
|