File size: 8,704 Bytes
cd6dcce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9272243
cd6dcce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python3

"""
The 3D NEST transformer based segmentation model

MASI Lab, Vanderbilty University


Authors: Xin Yu, Yinchi Zhou, Yucheng Tang, Bennett Landman


The NEST code is partly from

Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and
Interpretable Visual Understanding
https://arxiv.org/pdf/2105.12723.pdf


"""


# limitations under the License.
from typing import Sequence, Tuple, Union

import torch
import torch.nn as nn
from monai.networks.blocks import Convolution
from monai.networks.blocks.dynunet_block import UnetOutBlock

# from scripts.networks.swin_transformer_3d import SwinTransformer3D
from scripts.networks.nest_transformer_3D import NestTransformer3D
from scripts.networks.unest_block import UNesTBlock, UNesTConvBlock, UNestUpBlock

# from monai.networks.blocks.unetr_block import UnetstrBasicBlock, UnetrPrUpBlock, UnetResBlock


class UNesT(nn.Module):
    """
    UNesT model implementation
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        img_size: Sequence[int] = (96, 96, 96),
        feature_size: int = 16,
        patch_size: int = 2,
        depths: Sequence[int] = (2, 2, 2, 2),
        num_heads: Sequence[int] = (3, 6, 12, 24),
        window_size: Sequence[int] = (7, 7, 7),
        norm_name: Union[Tuple, str] = "instance",
        conv_block: bool = False,
        res_block: bool = True,
        # featResBlock: bool = False,
        dropout_rate: float = 0.0,
    ) -> None:
        """
        Args:
            in_channels: dimension of input channels.
            out_channels: dimension of output channels.
            img_size: dimension of input image.
            feature_size: dimension of network feature size.
            hidden_size: dimension of hidden layer.
            mlp_dim: dimension of feedforward layer.
            num_heads: number of attention heads.
            pos_embed: position embedding layer type.
            norm_name: feature normalization type and arguments.
            conv_block: bool argument to determine if convolutional block is used.
            res_block: bool argument to determine if residual block is used.
            dropout_rate: faction of the input units to drop.

        """

        super().__init__()

        if not (0 <= dropout_rate <= 1):
            raise AssertionError("dropout_rate should be between 0 and 1.")

        self.embed_dim = [128, 256, 512]

        self.nestViT = NestTransformer3D(
            img_size=96,
            in_chans=1,
            patch_size=4,
            num_levels=3,
            embed_dims=(128, 256, 512),
            num_heads=(4, 8, 16),
            depths=(2, 2, 8),
            num_classes=1000,
            mlp_ratio=4.0,
            qkv_bias=True,
            drop_rate=0.0,
            attn_drop_rate=0.0,
            drop_path_rate=0.5,
            norm_layer=None,
            act_layer=None,
            pad_type="",
            weight_init="",
            global_pool="avg",
        )

        self.encoder1 = UNesTConvBlock(
            spatial_dims=3,
            in_channels=1,
            out_channels=feature_size * 2,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.encoder2 = UNestUpBlock(
            spatial_dims=3,
            in_channels=self.embed_dim[0],
            out_channels=feature_size * 4,
            num_layer=1,
            kernel_size=3,
            stride=1,
            upsample_kernel_size=2,
            norm_name=norm_name,
            conv_block=False,
            res_block=False,
        )

        self.encoder3 = UNesTConvBlock(
            spatial_dims=3,
            in_channels=self.embed_dim[0],
            out_channels=8 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=res_block,
        )

        self.encoder4 = UNesTConvBlock(
            spatial_dims=3,
            in_channels=self.embed_dim[1],
            out_channels=16 * feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder5 = UNesTBlock(
            spatial_dims=3,
            in_channels=2 * self.embed_dim[2],
            out_channels=feature_size * 32,
            stride=1,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder4 = UNesTBlock(
            spatial_dims=3,
            in_channels=self.embed_dim[2],
            out_channels=feature_size * 16,
            stride=1,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder3 = UNesTBlock(
            spatial_dims=3,
            in_channels=feature_size * 16,
            out_channels=feature_size * 8,
            stride=1,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder2 = UNesTBlock(
            spatial_dims=3,
            in_channels=feature_size * 8,
            out_channels=feature_size * 4,
            stride=1,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )

        self.decoder1 = UNesTBlock(
            spatial_dims=3,
            in_channels=feature_size * 4,
            out_channels=feature_size * 2,
            stride=1,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )

        self.encoder10 = Convolution(
            spatial_dims=3,
            in_channels=32 * feature_size,
            out_channels=64 * feature_size,
            strides=2,
            adn_ordering="ADN",
            dropout=0.0,
        )

        self.out = UnetOutBlock(spatial_dims=3, in_channels=feature_size * 2, out_channels=out_channels)  # type: ignore

    def proj_feat(self, x, hidden_size, feat_size):
        x = x.view(x.size(0), feat_size[0], feat_size[1], feat_size[2], hidden_size)
        x = x.permute(0, 4, 1, 2, 3).contiguous()
        return x

    def load_from(self, weights):
        with torch.no_grad():
            # copy weights from patch embedding
            for i in weights["state_dict"]:
                print(i)
            self.vit.patch_embedding.position_embeddings.copy_(
                weights["state_dict"]["module.transformer.patch_embedding.position_embeddings_3d"]
            )
            self.vit.patch_embedding.cls_token.copy_(
                weights["state_dict"]["module.transformer.patch_embedding.cls_token"]
            )
            self.vit.patch_embedding.patch_embeddings[1].weight.copy_(
                weights["state_dict"]["module.transformer.patch_embedding.patch_embeddings_3d.1.weight"]
            )
            self.vit.patch_embedding.patch_embeddings[1].bias.copy_(
                weights["state_dict"]["module.transformer.patch_embedding.patch_embeddings_3d.1.bias"]
            )

            # copy weights from  encoding blocks (default: num of blocks: 12)
            for bname, block in self.vit.blocks.named_children():
                print(block)
                block.loadFrom(weights, n_block=bname)
            # last norm layer of transformer
            self.vit.norm.weight.copy_(weights["state_dict"]["module.transformer.norm.weight"])
            self.vit.norm.bias.copy_(weights["state_dict"]["module.transformer.norm.bias"])

    def forward(self, x_in):
        x, hidden_states_out = self.nestViT(x_in)

        enc0 = self.encoder1(x_in)  # 2, 32, 96, 96, 96

        x1 = hidden_states_out[0]  # 2, 128, 24, 24, 24

        enc1 = self.encoder2(x1)  # 2, 64, 48, 48, 48

        x2 = hidden_states_out[1]  # 2, 128, 24, 24, 24

        enc2 = self.encoder3(x2)  # 2, 128, 24, 24, 24

        x3 = hidden_states_out[2]  # 2, 256, 12, 12, 12

        enc3 = self.encoder4(x3)  # 2, 256, 12, 12, 12

        x4 = hidden_states_out[3]

        enc4 = x4  # 2, 512, 6, 6, 6

        dec4 = x  # 2, 512, 6, 6, 6

        dec4 = self.encoder10(dec4)  # 2, 1024, 3, 3, 3

        dec3 = self.decoder5(dec4, enc4)  # 2, 512, 6, 6, 6

        dec2 = self.decoder4(dec3, enc3)  # 2, 256, 12, 12, 12

        dec1 = self.decoder3(dec2, enc2)  # 2, 128, 24, 24, 24

        dec0 = self.decoder2(dec1, enc1)  # 2, 64, 48, 48, 48

        out = self.decoder1(dec0, enc0)  # 2, 32, 96, 96, 96

        logits = self.out(out)
        return logits