File size: 17,794 Bytes
cd6dcce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#!/usr/bin/env python3


import collections.abc
import math
import warnings
from itertools import repeat
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    from torch import _assert
except ImportError:

    def _assert(condition: bool, message: str):
        assert condition, message


def drop_block_2d(
    x,
    drop_prob: float = 0.1,
    block_size: int = 7,
    gamma_scale: float = 1.0,
    with_noise: bool = False,
    inplace: bool = False,
    batchwise: bool = False,
):
    """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf

    DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
    runs with success, but needs further validation and possibly optimization for lower runtime impact.
    """
    b, c, h, w = x.shape
    total_size = w * h
    clipped_block_size = min(block_size, min(w, h))
    # seed_drop_rate, the gamma parameter
    gamma = (
        gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))
    )

    # Forces the block to be inside the feature map.
    w_i, h_i = torch.meshgrid(torch.arange(w).to(x.device), torch.arange(h).to(x.device))
    valid_block = ((w_i >= clipped_block_size // 2) & (w_i < w - (clipped_block_size - 1) // 2)) & (
        (h_i >= clipped_block_size // 2) & (h_i < h - (clipped_block_size - 1) // 2)
    )
    valid_block = torch.reshape(valid_block, (1, 1, h, w)).to(dtype=x.dtype)

    if batchwise:
        # one mask for whole batch, quite a bit faster
        uniform_noise = torch.rand((1, c, h, w), dtype=x.dtype, device=x.device)
    else:
        uniform_noise = torch.rand_like(x)
    block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype)
    block_mask = -F.max_pool2d(
        -block_mask, kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2  # block_size,
    )

    if with_noise:
        normal_noise = torch.randn((1, c, h, w), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x)
        if inplace:
            x.mul_(block_mask).add_(normal_noise * (1 - block_mask))
        else:
            x = x * block_mask + normal_noise * (1 - block_mask)
    else:
        normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype)
        if inplace:
            x.mul_(block_mask * normalize_scale)
        else:
            x = x * block_mask * normalize_scale
    return x


def drop_block_fast_2d(
    x: torch.Tensor,
    drop_prob: float = 0.1,
    block_size: int = 7,
    gamma_scale: float = 1.0,
    with_noise: bool = False,
    inplace: bool = False,
):
    """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf

    DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
    block mask at edges.
    """
    b, c, h, w = x.shape
    total_size = w * h
    clipped_block_size = min(block_size, min(w, h))
    gamma = (
        gamma_scale * drop_prob * total_size / clipped_block_size**2 / ((w - block_size + 1) * (h - block_size + 1))
    )

    block_mask = torch.empty_like(x).bernoulli_(gamma)
    block_mask = F.max_pool2d(
        block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2
    )

    if with_noise:
        normal_noise = torch.empty_like(x).normal_()
        if inplace:
            x.mul_(1.0 - block_mask).add_(normal_noise * block_mask)
        else:
            x = x * (1.0 - block_mask) + normal_noise * block_mask
    else:
        block_mask = 1 - block_mask
        normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-6)).to(dtype=x.dtype)
        if inplace:
            x.mul_(block_mask * normalize_scale)
        else:
            x = x * block_mask * normalize_scale
    return x


class DropBlock2d(nn.Module):
    """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf"""

    def __init__(
        self, drop_prob=0.1, block_size=7, gamma_scale=1.0, with_noise=False, inplace=False, batchwise=False, fast=True
    ):
        super(DropBlock2d, self).__init__()
        self.drop_prob = drop_prob
        self.gamma_scale = gamma_scale
        self.block_size = block_size
        self.with_noise = with_noise
        self.inplace = inplace
        self.batchwise = batchwise
        self.fast = fast  # FIXME finish comparisons of fast vs not

    def forward(self, x):
        if not self.training or not self.drop_prob:
            return x
        if self.fast:
            return drop_block_fast_2d(
                x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace
            )
        else:
            return drop_block_2d(
                x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise
            )


def drop_path(x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob=None, scale_by_keep=True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)


def create_conv3d(in_channels, out_channels, kernel_size, **kwargs):
    """Select a 2d convolution implementation based on arguments
    Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv3d, or CondConv2d.

    Used extensively by EfficientNet, MobileNetv3 and related networks.
    """

    depthwise = kwargs.pop("depthwise", False)
    # for DW out_channels must be multiple of in_channels as must have out_channels % groups == 0
    groups = in_channels if depthwise else kwargs.pop("groups", 1)

    m = create_conv3d_pad(in_channels, out_channels, kernel_size, groups=groups, **kwargs)
    return m


def conv3d_same(
    x,
    weight: torch.Tensor,
    bias: Optional[torch.Tensor] = None,
    stride: Tuple[int, int] = (1, 1, 1),
    padding: Tuple[int, int] = (0, 0, 0),
    dilation: Tuple[int, int] = (1, 1, 1),
    groups: int = 1,
):
    x = pad_same(x, weight.shape[-3:], stride, dilation)
    return F.conv3d(x, weight, bias, stride, (0, 0, 0), dilation, groups)


class Conv3dSame(nn.Conv2d):
    """Tensorflow like 'SAME' convolution wrapper for 2D convolutions"""

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
        super(Conv3dSame, self).__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)

    def forward(self, x):
        return conv3d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)


def create_conv3d_pad(in_chs, out_chs, kernel_size, **kwargs):
    padding = kwargs.pop("padding", "")
    kwargs.setdefault("bias", False)
    padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
    if is_dynamic:
        return Conv3dSame(in_chs, out_chs, kernel_size, **kwargs)
    else:
        return nn.Conv3d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)


# Calculate symmetric padding for a convolution
def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int:
    padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
    return padding


# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
def get_same_padding(x: int, k: int, s: int, d: int):
    return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0)


# Can SAME padding for given args be done statically?
def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_):
    return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0


# Dynamically pad input x with 'SAME' padding for conv with specified args
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1, 1), value: float = 0):
    id, ih, iw = x.size()[-3:]
    pad_d, pad_h, pad_w = (
        get_same_padding(id, k[0], s[0], d[0]),
        get_same_padding(ih, k[1], s[1], d[1]),
        get_same_padding(iw, k[2], s[2], d[2]),
    )
    if pad_d > 0 or pad_h > 0 or pad_w > 0:
        x = F.pad(
            x,
            [pad_d // 2, pad_d - pad_d // 2, pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2],
            value=value,
        )
    return x


def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]:
    dynamic = False
    if isinstance(padding, str):
        # for any string padding, the padding will be calculated for you, one of three ways
        padding = padding.lower()
        if padding == "same":
            # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
            if is_static_pad(kernel_size, **kwargs):
                # static case, no extra overhead
                padding = get_padding(kernel_size, **kwargs)
            else:
                # dynamic 'SAME' padding, has runtime/GPU memory overhead
                padding = 0
                dynamic = True
        elif padding == "valid":
            # 'VALID' padding, same as padding=0
            padding = 0
        else:
            # Default to PyTorch style 'same'-ish symmetric padding
            padding = get_padding(kernel_size, **kwargs)
    return padding, dynamic


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))

    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple


def make_divisible(v, divisor=8, min_value=None, round_limit=0.9):
    min_value = min_value or divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < round_limit * v:
        new_v += divisor
    return new_v


class Linear(nn.Linear):
    r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`

    Wraps torch.nn.Linear to support AMP + torchscript usage by manually casting
    weight & bias to input.dtype to work around an issue w/ torch.addmm in this use case.
    """

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        if torch.jit.is_scripting():
            bias = self.bias.to(dtype=input.dtype) if self.bias is not None else None
            return F.linear(input, self.weight.to(dtype=input.dtype), bias=bias)
        else:
            return F.linear(input, self.weight, self.bias)


class Mlp(nn.Module):
    """MLP as used in Vision Transformer, MLP-Mixer and related networks"""

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        drop_probs = to_2tuple(drop)

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


def avg_pool3d_same(
    x,
    kernel_size: List[int],
    stride: List[int],
    padding: List[int] = (0, 0, 0),
    ceil_mode: bool = False,
    count_include_pad: bool = True,
):
    # FIXME how to deal with count_include_pad vs not for external padding?
    x = pad_same(x, kernel_size, stride)
    return F.avg_pool3d(x, kernel_size, stride, (0, 0, 0), ceil_mode, count_include_pad)


class AvgPool3dSame(nn.AvgPool2d):
    """Tensorflow like 'SAME' wrapper for 2D average pooling"""

    def __init__(self, kernel_size: int, stride=None, padding=0, ceil_mode=False, count_include_pad=True):
        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        super(AvgPool3dSame, self).__init__(kernel_size, stride, (0, 0, 0), ceil_mode, count_include_pad)

    def forward(self, x):
        x = pad_same(x, self.kernel_size, self.stride)
        return F.avg_pool3d(x, self.kernel_size, self.stride, self.padding, self.ceil_mode, self.count_include_pad)


def max_pool3d_same(
    x,
    kernel_size: List[int],
    stride: List[int],
    padding: List[int] = (0, 0, 0),
    dilation: List[int] = (1, 1, 1),
    ceil_mode: bool = False,
):
    x = pad_same(x, kernel_size, stride, value=-float("inf"))
    return F.max_pool3d(x, kernel_size, stride, (0, 0, 0), dilation, ceil_mode)


class MaxPool3dSame(nn.MaxPool2d):
    """Tensorflow like 'SAME' wrapper for 3D max pooling"""

    def __init__(self, kernel_size: int, stride=None, padding=0, dilation=1, ceil_mode=False):
        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)
        super(MaxPool3dSame, self).__init__(kernel_size, stride, (0, 0, 0), dilation, ceil_mode)

    def forward(self, x):
        x = pad_same(x, self.kernel_size, self.stride, value=-float("inf"))
        return F.max_pool3d(x, self.kernel_size, self.stride, (0, 0, 0), self.dilation, self.ceil_mode)


def create_pool3d(pool_type, kernel_size, stride=None, **kwargs):
    stride = stride or kernel_size
    padding = kwargs.pop("padding", "")
    padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, **kwargs)
    if is_dynamic:
        if pool_type == "avg":
            return AvgPool3dSame(kernel_size, stride=stride, **kwargs)
        elif pool_type == "max":
            return MaxPool3dSame(kernel_size, stride=stride, **kwargs)
        else:
            raise AssertionError()

            # assert False, f"Unsupported pool type {pool_type}"
    else:
        if pool_type == "avg":
            return nn.AvgPool3d(kernel_size, stride=stride, padding=padding, **kwargs)
        elif pool_type == "max":
            return nn.MaxPool3d(kernel_size, stride=stride, padding=padding, **kwargs)
        else:
            raise AssertionError()

            # assert False, f"Unsupported pool type {pool_type}"


def _float_to_int(x: float) -> int:
    """
    Symbolic tracing helper to substitute for inbuilt `int`.
    Hint: Inbuilt `int` can't accept an argument of type `Proxy`
    """
    return int(x)


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)