File size: 6,382 Bytes
650e244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import logging
import os
import pathlib
from typing import Dict, List
import numpy as np
from monai.apps.utils import tqdm
from monai.utils import optional_import
loadmat, _ = optional_import("scipy.io", name="loadmat")
PILImage, _ = optional_import("PIL.Image")
def consep_nuclei_dataset(datalist, output_dir, crop_size, min_area=80, min_distance=20, limit=0) -> List[Dict]:
"""
Utility to pre-process and create dataset list for Patches per Nuclei for training over ConSeP dataset.
Args:
datalist: A list of data dictionary. Each entry should at least contain 'image_key': <image filename>.
For example, typical input data can be a list of dictionaries::
[{'image': <image filename>, 'label': <label filename>}]
output_dir: target directory to store the training data after flattening
crop_size: Crop Size for each patch
min_area: Min Area for each nuclei to be included in dataset
min_distance: Min Distance from boundary for each nuclei to be included in dataset
limit: limit number of inputs for pre-processing. Defaults to 0 (no limit).
Raises:
ValueError: When ``datalist`` is Empty
ValueError: When ``scipy.io.loadmat`` is Not available
Returns:
A new datalist that contains path to the images/labels after pre-processing.
Example::
datalist = consep_nuclei_dataset(
datalist=[{'image': 'img1.png', 'label': 'label1.mat'}],
output_dir=output,
crop_size=128,
limit=1,
)
print(datalist[0]["image"], datalist[0]["label"])
"""
if not len(datalist):
raise ValueError("Input datalist is empty")
if not loadmat:
print("Please make sure scipy with loadmat function is correctly installed")
raise ValueError("scipy.io.loadmat module/function not found")
dataset_json: List[Dict] = []
for d in tqdm(datalist):
logging.debug(f"Processing Image: {d['image']} => Label: {d['label']}")
# Image
image = PILImage.open(d["image"]).convert("RGB")
# Label
m = loadmat(d["label"])
instances = m["inst_map"]
for nuclei_id, (class_id, (y, x)) in enumerate(zip(m["inst_type"], m["inst_centroid"]), start=1):
x, y = (int(x), int(y))
class_id = int(class_id)
class_id = 3 if class_id in (3, 4) else 4 if class_id in (5, 6, 7) else class_id # override
if 0 < limit <= len(dataset_json):
return dataset_json
item = __prepare_patch(
d=d,
nuclei_id=nuclei_id,
output_dir=output_dir,
image=image,
instances=instances,
instance_idx=nuclei_id,
crop_size=crop_size,
class_id=class_id,
centroid=(x, y),
min_area=min_area,
min_distance=min_distance,
others_idx=255,
)
if item:
dataset_json.append(item)
return dataset_json
def __prepare_patch(
d,
nuclei_id,
output_dir,
image,
instances,
instance_idx,
crop_size,
class_id,
centroid,
min_area,
min_distance,
others_idx=255,
):
image_np = np.array(image)
image_size = image.size
bbox = __compute_bbox(crop_size, centroid, image_size)
cropped_label_np = instances[bbox[0] : bbox[2], bbox[1] : bbox[3]]
cropped_label_np = np.array(cropped_label_np)
this_label = np.where(cropped_label_np == instance_idx, class_id, 0)
if np.count_nonzero(this_label) < min_area:
return None
x, y = centroid
if x < min_distance or y < min_distance or (image_size[0] - x) < min_distance or (image_size[1] - y < min_distance):
return None
centroid = centroid[0] - bbox[0], centroid[1] - bbox[1]
others = np.where(np.logical_and(cropped_label_np > 0, cropped_label_np != instance_idx), others_idx, 0)
cropped_label_np = this_label + others
cropped_label = PILImage.fromarray(cropped_label_np.astype(np.uint8), None)
cropped_image_np = image_np[bbox[0] : bbox[2], bbox[1] : bbox[3], :]
cropped_image = PILImage.fromarray(cropped_image_np, "RGB")
images_dir = os.path.join(output_dir, "Images") if output_dir else "Images"
labels_dir = os.path.join(output_dir, "Labels") if output_dir else "Labels"
centroids_dir = os.path.join(output_dir, "Centroids") if output_dir else "Centroids"
os.makedirs(images_dir, exist_ok=True)
os.makedirs(labels_dir, exist_ok=True)
os.makedirs(centroids_dir, exist_ok=True)
image_id = pathlib.Path(d["image"]).stem
file_prefix = f"{image_id}_{class_id}_{str(instance_idx).zfill(4)}"
image_file = os.path.join(images_dir, f"{file_prefix}.png")
label_file = os.path.join(labels_dir, f"{file_prefix}.png")
centroid_file = os.path.join(centroids_dir, f"{file_prefix}.txt")
cropped_image.save(image_file)
cropped_label.save(label_file)
with open(centroid_file, "w") as fp:
json.dump([centroid], fp)
item = copy.deepcopy(d)
item["nuclei_id"] = nuclei_id
item["mask_value"] = class_id
item["image"] = image_file
item["label"] = label_file
item["centroid"] = centroid
return item
def __compute_bbox(patch_size, centroid, size):
x, y = centroid
m, n = size
x_start = int(max(x - patch_size / 2, 0))
y_start = int(max(y - patch_size / 2, 0))
x_end = x_start + patch_size
y_end = y_start + patch_size
if x_end > m:
x_end = m
x_start = m - patch_size
if y_end > n:
y_end = n
y_start = n - patch_size
return x_start, y_start, x_end, y_end
|