Edit model card

layoutlmv3-finetuned-invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on the generated dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0070
  • Precision: 0.9960
  • Recall: 0.9980
  • F1: 0.9970
  • Accuracy: 0.9996

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 100 0.0947 0.892 0.9047 0.8983 0.9886
No log 4.0 200 0.0232 0.972 0.9858 0.9789 0.9971
No log 6.0 300 0.0175 0.972 0.9858 0.9789 0.9971
No log 8.0 400 0.0130 0.972 0.9858 0.9789 0.9971
0.1292 10.0 500 0.0070 0.9960 0.9980 0.9970 0.9996
0.1292 12.0 600 0.0081 0.9837 0.9817 0.9827 0.9975
0.1292 14.0 700 0.0045 0.9980 0.9959 0.9970 0.9996
0.1292 16.0 800 0.0026 0.9980 0.9980 0.9980 0.9998
0.1292 18.0 900 0.0024 0.9980 0.9980 0.9980 0.9998
0.0066 20.0 1000 0.0030 0.9960 0.9980 0.9970 0.9996
0.0066 22.0 1100 0.0025 0.9980 0.9980 0.9980 0.9998
0.0066 24.0 1200 0.0019 0.9980 0.9980 0.9980 0.9998
0.0066 26.0 1300 0.0019 0.9980 0.9980 0.9980 0.9998
0.0066 28.0 1400 0.0028 0.9960 0.9980 0.9970 0.9996
0.0026 30.0 1500 0.0022 0.9960 0.9980 0.9970 0.9996
0.0026 32.0 1600 0.0023 0.9960 0.9980 0.9970 0.9996
0.0026 34.0 1700 0.0021 0.9960 0.9980 0.9970 0.9996
0.0026 36.0 1800 0.0033 0.9960 0.9980 0.9970 0.9996
0.0026 38.0 1900 0.0032 0.9960 0.9980 0.9970 0.9996
0.0019 40.0 2000 0.0032 0.9960 0.9980 0.9970 0.9996

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results