mbert_c19: An mbert model pretrained on 1.5 million COVID-19 multi-dialect Arabic tweets
mBERT COVID-19 Arxiv URL is a pretrained (fine-tuned) version of the mBERT model (https://huggingface.co/bert-base-multilingual-cased). The pretraining was done using 1.5 million multi-dialect Arabic tweets regarding the COVID-19 pandemic from the “Large Arabic Twitter Dataset on COVID-19” (https://arxiv.org/abs/2004.04315). The model can achieve better results for the tasks that deal with multi-dialect Arabic tweets in relation to the COVID-19 pandemic.
Classification results for multiple tasks including fake-news and hate speech detection when using arabert_c19 and mbert_ar_c19:
For more details refer to the paper (link)
arabert | mbert | distilbert multi | arabert Covid-19 | mbert Covid-19 | |
---|---|---|---|---|---|
Contains hate (Binary) | 0.8346 | 0.6675 | 0.7145 | 0.8649 |
0.8492 |
Talk about a cure (Binary) | 0.8193 | 0.7406 | 0.7127 | 0.9055 | 0.9176 |
News or opinion (Binary) | 0.8987 | 0.8332 | 0.8099 | 0.9163 |
0.9116 |
Contains fake information (Binary) | 0.6415 | 0.5428 | 0.4743 | 0.7739 |
0.7228 |
Preprocessing
from arabert.preprocess import ArabertPreprocessor
model_name="moha/mbert_ar_c19"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "للوقايه من عدم انتشار كورونا عليك اولا غسل اليدين بالماء والصابون وتكون عملية الغسل دقيقه تشمل راحة اليد الأصابع التركيز على الإبهام"
arabert_prep.preprocess(text)
Citation
Please cite as:
@misc{ameur2021aracovid19mfh,
title={AraCOVID19-MFH: Arabic COVID-19 Multi-label Fake News and Hate Speech Detection Dataset},
author={Mohamed Seghir Hadj Ameur and Hassina Aliane},
year={2021},
eprint={2105.03143},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Contacts
Hadj Ameur: Github | mohamedhadjameur@gmail.com | mhadjameur@cerist.dz
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.