|
--- |
|
license: llama2 |
|
train: false |
|
inference: false |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
This is an experimental <a href="https://github.com/mobiusml/hqq/">HQQ</a> 2-bit quantized <a href="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"> Llama2-7B-chat model </a> using a low-rank adapter to improve the performance (referred to as <a href="https://mobiusml.github.io/1bit_blog/">HQQ+</a>). |
|
|
|
Quantizing small models at extreme low-bits is a challenging task. The purpose of this model is to show the community what to expect when fine-tuning such models. |
|
We notice that, when given more specialized data, the low-bit model can even outperform the full-precision model at some tasks. |
|
|
|
This version offloads the meta-data to the CPU, so only the 2-bit weights and the low-rank adapters are stored in the GPU memory. |
|
|
|
## Datasets |
|
The adapter was trained via SFT on random subsets of the following: |
|
|
|
### Base Model |
|
* <a href="https://huggingface.co/datasets/wikitext">wikitext-2-raw-v1</a> (full) |
|
|
|
### Chat Model |
|
* <a href="https://huggingface.co/datasets/timdettmers/openassistant-guana"> timdettmers/openassistant-guanaco </a> (full) |
|
* <a href="https://huggingface.co/datasets/icrosoft/orca-math-word-problems-200k"> microsoft/orca-math-word-problems-200k </a> (10K) |
|
* <a href="https://huggingface.co/datasets/meta-math/MetaMathQA"> meta-math/MetaMathQA </a> (10K) |
|
* <a href="https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized"> HuggingFaceH4/ultrafeedback_binarized </a> (10K - chosen answers only) |
|
|
|
## Performance |
|
| Models | Llama2-7B (fp16)| Llama2-7B (HQQ 2-bit)| Llama2-7B (HQQ+ 2-bit)| Quip# (2-bit)| |
|
|-------------------|------------------|------------------|------------------|------------------| |
|
| Wiki Perpexlity | 5.18 | 6.06 | <b>5.14</b> | 8.54 | |
|
| VRAM (GB) | 13.5 | <b>2.6</b> | 2.69 | 2.72 | |
|
| forward time (sec)| <b>0.1<b> | 0.221 | 0.27 | 0.353 | |
|
|
|
| Models | Llama2-7B-chat (fp16)| Llama2-7B-chat (HQQ 2-bit)| Llama2-7B-chat (HQQ+ 2-bit)| |
|
|-------------------|------------------|------------------|------------------| |
|
| ARC (25-shot) | 53.67 | 45.56 | 47.01 | |
|
| HellaSwag (10-shot)| 78.56 | 73.59 | 73.74 | |
|
| MMLU (5-shot) | 48.16 | 43.18 | 43.33 | |
|
| TruthfulQA-MC2 | 45.32 | 43.1 | 42.66 | |
|
| Winogrande (5-shot)| 72.53 | 67.32 | 71.51 | |
|
| GSM8K (5-shot) | 23.12 | 9.7 | 28.43 | |
|
| Average | 53.56 | 47.08 | 51.11 | |
|
|
|
## Usage |
|
First, install the latest version of <a href="https://github.com/mobiusml/hqq/">HQQ</a>: |
|
``` |
|
pip install git+https://github.com/mobiusml/hqq.git |
|
``` |
|
Then you can use the sample code below: |
|
``` Python |
|
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer |
|
|
|
#Load the model |
|
model_id = 'mobiuslabsgmbh/Llama-2-7b-chat-hf_2bitgs8_hqq' |
|
model = HQQModelForCausalLM.from_quantized(model_id, adapter='adapter_v0.1.lora') |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
#Setup Inference Mode |
|
tokenizer.add_bos_token = False |
|
tokenizer.add_eos_token = False |
|
if not tokenizer.pad_token: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
model.config.use_cache = True |
|
model.eval(); |
|
|
|
# Optional: torch compile for faster inference |
|
# model = torch.compile(model) |
|
|
|
#Streaming Inference |
|
import torch, transformers |
|
from threading import Thread |
|
|
|
def chat_processor(chat, max_new_tokens=100, do_sample=True, device='cuda'): |
|
tokenizer.use_default_system_prompt = False |
|
streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_params = dict( |
|
tokenizer("<s> [INST] " + chat + " [/INST] ", return_tensors="pt").to(device), |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
pad_token_id=tokenizer.pad_token_id, |
|
top_p=0.90 if do_sample else None, |
|
top_k=50 if do_sample else None, |
|
temperature= 0.6 if do_sample else None, |
|
num_beams=1, |
|
repetition_penalty=1.2, |
|
) |
|
|
|
t = Thread(target=model.generate, kwargs=generate_params) |
|
t.start() |
|
|
|
print("User: ", chat); |
|
print("Assistant: "); |
|
outputs = "" |
|
for text in streamer: |
|
outputs += text |
|
print(text, end="", flush=True) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
return outputs |
|
``` |
|
|
|
### Example |
|
``` Python |
|
outputs = chat_processor("If you had 5 apples yesterday and you ate 2 today morning, how many apples do you have this evening?", max_new_tokens=1000, do_sample=False) |
|
``` |
|
``` |
|
User: If you had 5 apples yesterday and you ate 2 today morning, how many apples do you have this evening? |
|
Assistant: |
|
You started with 5 apples.You ate 2 of them so now you have 5-2=3 apples left.So by the evening you will still have 3 apples. |
|
``` |
|
|