File size: 9,332 Bytes
1904ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import gc
import os
from dataclasses import dataclass, field
from typing import Dict, List, Optional

import torch
from datasets import Dataset, DatasetInfo, builder, load_dataset
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, TrainingArguments
from vllm import LLM, SamplingParams
from vllm.model_executor.parallel_utils.parallel_state import destroy_model_parallel

from trl import DPOTrainer


builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True


@dataclass
class ScriptArguments:
    output_dir: Optional[str] = field(
        default="compare_results",
        metadata={"help": "output folder"},
    )
    num_gpus: Optional[int] = field(default=1)
    model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
    revision: Optional[str] = field(default="main", metadata={"help": "the model revision"})
    tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
    dataset_name: Optional[str] = field(
        default="arianhosseini/openai_summarize_unlabelled", metadata={"help": "the dataset name"}
    )
    dataset_prompt_field: Optional[str] = field(default="query")
    train_split: Optional[str] = field(default="train[:20]", metadata={"help": "the dataset name"})
    batch_size: Optional[int] = field(default=4)
    max_prompt_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})

    temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
    top_p: Optional[float] = field(default=1.0, metadata={"help": "Gen temperature"})
    max_new_tokens: Optional[int] = field(default=48, metadata={"help": "max new tokens"})
    dtype: Optional[str] = field(default="auto")

    lora_model: Optional[bool] = field(default=False)
    base_model_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
    base_model_revision: Optional[str] = field(default=None)


def prepare_vllm_model(script_args):
    if script_args.tokenizer_name is not None:
        tokenizer_name = script_args.tokenizer_name
    else:
        tokenizer_name = script_args.model_name

    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)

    if tokenizer_name.startswith("EleutherAI"):
        tokenizer.add_special_tokens({"pad_token": "[PAD]"})

    tokenizer.padding_side = "left"

    if script_args.lora_model:
        # peft model that needs to be merged
        if script_args.base_model_name is not None:
            base_model = AutoModelForCausalLM.from_pretrained(
                script_args.base_model_name, revision=script_args.base_model_revision
            )
            # merge the model and save
            model = PeftModelForCausalLM.from_pretrained(
                base_model, script_args.model_name, revision=script_args.revision, device_map="cpu"
            )
        else:
            model = AutoPeftModelForCausalLM.from_pretrained(
                script_args.model_name, revision=script_args.revision, device_map="cpu"
            )
        merged = model.merge_and_unload()
        model_save_path = f"/home/toolkit/trl_results/{script_args.model_name}_merged/{script_args.revision}"
        merged.save_pretrained(model_save_path)
        del model
        del merged
        model_name = model_save_path
        revision = None
    else:
        model_name = script_args.model_name
        revision = script_args.revision

    llm = LLM(
        model=model_name,
        revision=revision,
        dtype=script_args.dtype,
        tokenizer=tokenizer_name,
        tensor_parallel_size=script_args.num_gpus,
        trust_remote_code=True,
    )
    llm.set_tokenizer(tokenizer)

    return llm, tokenizer


def strip_prompt(examples):
    examples["prompt"] = [prompt.strip() for prompt in examples["prompt"]]

    return examples


def generate_vllm(script_args):
    llm, _ = prepare_vllm_model(script_args)

    dataset = load_dataset(script_args.dataset_name, split=script_args.train_split)

    prompts = dataset[script_args.dataset_prompt_field]

    sampling_params = SamplingParams(
        temperature=script_args.temperature,
        max_tokens=script_args.max_new_tokens,
        top_p=script_args.top_p,
        n=2,
    )

    generations = llm.generate(prompts, sampling_params)

    print(f"generated {len(generations)} samples")

    def dataset_generator():
        for gen in generations:
            if len(gen.outputs) == 2:
                yield {
                    "prompt": gen.prompt,
                    "chosen": gen.outputs[0].text,
                    "rejected": gen.outputs[1].text,
                }
            else:
                print("skipping gen, only 1 output")

    ds_info = DatasetInfo(
        f"{script_args.dataset_name} split {script_args.train_split} prompts used to generate with {script_args.model_name}"
        f" temp {script_args.temperature} top_p {script_args.top_p} "
    )
    generated_dataset = Dataset.from_generator(dataset_generator, info=ds_info)

    destroy_model_parallel()
    del llm.llm_engine.driver_worker
    del llm
    gc.collect()
    torch.cuda.empty_cache()
    torch.distributed.destroy_process_group()

    return generated_dataset


def relabel(script_args, dataset):
    torch_dtype = script_args.dtype if script_args.dtype in ["auto", None] else getattr(torch, script_args.dtype)

    if script_args.base_model_name is not None:
        base_model = AutoModelForCausalLM.from_pretrained(
            script_args.base_model_name,
            revision=script_args.base_model_revision,
        )
        # merge the model and save
        model = PeftModelForCausalLM.from_pretrained(
            base_model,
            script_args.model_name,
            revision=script_args.revision,
            torch_dtype=torch_dtype,
        )
    else:
        model = AutoPeftModelForCausalLM.from_pretrained(
            script_args.model_name,
            revision=script_args.revision,
            torch_dtype=torch_dtype,
        )

    if script_args.tokenizer_name is not None:
        tokenizer_name = script_args.tokenizer_name
    else:
        tokenizer_name = script_args.model_name

    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)

    if tokenizer_name.startswith("EleutherAI"):
        tokenizer.add_special_tokens({"pad_token": "[PAD]"})

    training_args = TrainingArguments(per_device_eval_batch_size=int(script_args.batch_size), output_dir=".")

    dpo_trainer = DPOTrainer(
        model=model,
        tokenizer=tokenizer,
        args=training_args,
        max_length=script_args.max_new_tokens + script_args.max_prompt_length,
        max_target_length=script_args.max_new_tokens,
        max_prompt_length=script_args.max_prompt_length,
    )

    def relabel_with_preds(batch: Dict[str, List]):
        relabel_batch = {
            "prompt": [],
            "chosen": [],
            "rejected": [],
            "pred_chosen": [],
            "pred_rejected": [],
        }
        for prompt, chosen, rejected, pred_chosen, pred_rejected in zip(
            batch["prompt"],
            batch["chosen"],
            batch["rejected"],
            batch["pred_chosen"],
            batch["pred_rejected"],
        ):
            relabel_batch["prompt"].append(prompt)
            if pred_chosen >= pred_rejected:
                relabel_batch["chosen"].append(chosen)
                relabel_batch["rejected"].append(rejected)
                relabel_batch["pred_chosen"].append(pred_chosen)
                relabel_batch["pred_rejected"].append(pred_rejected)
            else:
                relabel_batch["chosen"].append(rejected)
                relabel_batch["rejected"].append(chosen)
                relabel_batch["pred_chosen"].append(pred_rejected)
                relabel_batch["pred_rejected"].append(pred_chosen)

        return relabel_batch

    dpo_trainer.accelerator.print("Prediction")
    preds, _, metrics = dpo_trainer.predict(dataset)
    (
        chosen_rewards,
        rejected_rewards,
        policy_chosen_logps,
        policy_rejected_logps,
        reference_chosen_logps,
        reference_rejected_logps,
    ) = preds
    dpo_trainer.accelerator.print(f"metrics {metrics}")

    if dpo_trainer.accelerator.is_local_main_process:
        print("Relabelling Dataset and Saving")
        dataset = dataset.add_column("pred_chosen", chosen_rewards)
        dataset = dataset.add_column("pred_rejected", rejected_rewards)

        relabel_dataset = dataset.map(
            relabel_with_preds,
            batched=True,
        )

        description = f"{script_args.dataset_name} relabelled with {script_args.model_name}"
        relabel_dataset._info.description = description
        relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir), split="train")


def generate_relabel_args_dict(args_dict):
    parser = HfArgumentParser(ScriptArguments)
    script_args = parser.parse_dict(args_dict)[0]
    dataset = generate_vllm(script_args)
    relabel(script_args, dataset)


if __name__ == "__main__":
    parser = HfArgumentParser(ScriptArguments)
    script_args = parser.parse_args_into_dataclasses()[0]

    generate_vllm(script_args)