File size: 12,079 Bytes
1904ee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import gc
import os
from dataclasses import dataclass, field
from typing import List, Optional
import torch
from datasets import Dataset, builder, load_dataset
from huggingface_hub import list_repo_refs
from peft import PeftModelForCausalLM
from scalar_rm_model import ScalarModel, ScalarModelConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments
from vllm import LLM, SamplingParams
from vllm.model_executor.parallel_utils.parallel_state import destroy_model_parallel
import wandb
builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True
@dataclass
class GenerateScriptArguments:
output_dir: Optional[str] = field(
default="/home/toolkit/trl_results",
metadata={"help": "output folder"},
)
num_gpus: Optional[int] = field(default=1)
base_model_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
base_model_revision: Optional[str] = field(default=None)
model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
model_revisions: Optional[List[str]] = field(default_factory=list)
# base_model_revision: Optional[str] = field(default=None)
tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
dataset_name: Optional[str] = field(
default="arianhosseini/openai_summarize_unlabelled", metadata={"help": "the dataset name"}
)
split: Optional[str] = field(default="validation", metadata={"help": "the dataset name"})
batch_size: Optional[int] = field(default=4)
seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
top_p: Optional[float] = field(default=1.0, metadata={"help": "Gen temperature"})
max_new_tokens: Optional[int] = field(default=48, metadata={"help": "max new tokens"})
gen_dtype: Optional[str] = field(default="auto")
@dataclass
class EvalScriptArguments:
wandb_log_id: Optional[str] = field(default=None)
gold_model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
gold_model_revision: Optional[str] = field(default=None)
eval_dtype: Optional[str] = field(default="auto")
eval_batch_size: Optional[int] = field(default=16)
max_length: Optional[int] = field(default=512)
gold_tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
flash_attention: Optional[bool] = field(default=False)
def generate(script_args):
tokenizer = AutoTokenizer.from_pretrained(script_args.tokenizer_name)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
tokenizer.padding_side = "left"
dataset = load_dataset(script_args.dataset_name, split=script_args.split)
prompts = dataset["query"]
sampling_params = SamplingParams(
temperature=script_args.temperature,
max_tokens=script_args.max_new_tokens,
top_p=script_args.top_p,
n=1,
include_stop_str_in_output=True,
skip_special_tokens=False,
)
refs = list_repo_refs(script_args.model_name, repo_type="model")
gens = {}
revisions = sorted([branch.name for branch in refs.branches])
for revision in revisions:
if revision == "main":
continue
if script_args.model_revisions and revision not in script_args.model_revisions:
continue
print(f"generating step {revision}")
if script_args.base_model_name is None:
# merged model
model_name = script_args.model_name
revision_name = revision
else:
# peft model that needs to be merged
base_model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name, revision=script_args.base_model_revision
)
# merge the model and save
model = PeftModelForCausalLM.from_pretrained(
base_model, script_args.model_name, revision=revision, device="cpu"
)
merged = model.merge_and_unload()
model_save_path = f"/home/toolkit/trl_results/{script_args.model_name}_merged/{revision}"
merged.save_pretrained(model_save_path)
del model
del merged
model_name = model_save_path
revision_name = revision
revision = None
llm = LLM(
model=model_name,
revision=revision,
tokenizer=script_args.tokenizer_name,
dtype=script_args.gen_dtype,
max_model_len=script_args.seq_length,
tensor_parallel_size=script_args.num_gpus,
trust_remote_code=True,
)
llm.set_tokenizer(tokenizer)
generations = llm.generate(prompts, sampling_params)
texts = [output.prompt + output.outputs[0].text for output in generations]
gens[revision_name] = texts
dataset = dataset.add_column(f"generations_{revision_name}", texts)
# delete old model
destroy_model_parallel()
del llm.llm_engine.driver_worker
del llm
gc.collect()
torch.cuda.empty_cache()
torch.distributed.destroy_process_group()
if script_args.output_dir is not None:
# TODO add hash to dataset path
# sampling_str = str(sampling_params)
# sampling_hash = hashlib.sha256(sampling_str.encode()).hexdigest()[:10]
dataset_path = os.path.join(
script_args.output_dir,
script_args.dataset_name.replace("/", "_"),
script_args.model_name.replace("/", "_"),
)
os.makedirs(dataset_path, exist_ok=True)
dataset.save_to_disk(dataset_path)
with open(f"{dataset_path}_sampling_params.txt", "w") as f:
print(sampling_params, file=f)
print(f"generated {len(gens)} steps")
reference = dataset["query_reference_response"]
return reference, gens
# ds_info = DatasetInfo(
# f"{script_args.dataset_name} split {script_args.train_split} prompts used to generate with {script_args.model_name}"
# f" temp {script_args.temperature} top_p {script_args.top_p} "
# )
# generated_dataset = Dataset.from_generator(dataset_generator, info=ds_info)
# generated_dataset.push_to_hub(os.path.basename(script_args.output_dir), split="train")
def evaluate(args, reference, generations, model_name=None):
if args.wandb_log_id is not None:
# don't overwrite the wandb name of the original run
if args.wandb_log_id == "model_name":
# model name = config_wandblogid
wandb_log_id = model_name.split("_")[-1]
else:
wandb_log_id = args.wandb_log_id
os.environ.pop("WANDB_NAME")
# original_name = wandb_name.removeprefix("geneval_")
wandb.init(id=wandb_log_id, resume="allow")
log_to_wandb = True
print(f"Logging to WandB {wandb_log_id}")
else:
log_to_wandb = False
torch_dtype = args.eval_dtype if args.eval_dtype in ["auto", None] else getattr(torch, args.eval_dtype)
tokenizer = AutoTokenizer.from_pretrained(args.gold_tokenizer_name)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
scalar_model_config = ScalarModelConfig.from_pretrained(
args.gold_model_name,
revision=args.gold_model_revision,
)
# hack to remove the path
# models/EleutherAI/pythia-6.9b-deduped/sft_model_55513 -> EleutherAI/pythia-6.9b-deduped
if scalar_model_config.base_model.startswith("models/"):
original_model = scalar_model_config.base_config["_name_or_path"].split("/")[2]
sft_model = f"vwxyzjn/EleutherAI_{original_model}__sft__tldr"
scalar_model_config.base_config["_name_or_path"] = sft_model
scalar_model_config.base_model = sft_model
_, seed, _ = args.gold_model_revision.split("__")
scalar_model_config.base_model_revision = f"sft__{seed}__1708611267"
# quantization_config = get_quantization_config(model_config)
model = ScalarModel.from_pretrained(
args.gold_model_name,
revision=args.gold_model_revision,
config=scalar_model_config,
torch_dtype=torch_dtype,
use_flash_attention_2=args.flash_attention,
)
model.config.pad_token_id = tokenizer.pad_token_id
training_args = TrainingArguments(per_device_eval_batch_size=int(args.eval_batch_size), output_dir=".")
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
)
def tokenize_and_add_eos(tokenizer, text_column, max_length):
def fn(example):
text = example[text_column]
if not text.endswith(tokenizer.eos_token):
text += tokenizer.eos_token
tokenized = tokenizer(
text,
padding="max_length",
max_length=max_length,
truncation=True,
)
# guarantee that last token is EOS if truncated
token_length = sum(tokenized["attention_mask"])
if token_length == max_length:
tokenized["input_ids"][-1] = tokenizer.eos_token_id
return tokenized
return fn
## get reference continuation rewards
dataset = Dataset.from_dict({"reference": reference})
dataset = dataset.map(tokenize_and_add_eos(tokenizer, "reference", args.max_length))
ref_results = trainer.predict(dataset)
ref_rewards = ref_results.predictions
step = 0
for step_str, query_response in generations.items():
dataset = Dataset.from_dict({"query_response": query_response})
dataset = dataset.map(tokenize_and_add_eos(tokenizer, "query_response", args.max_length))
print(f"Evaluating {step_str}")
results = trainer.predict(dataset)
gen_rewards = results.predictions
win_rate = (gen_rewards > ref_rewards).mean().item()
norm_reward = (gen_rewards - ref_rewards).mean().item()
if step_str.startswith("step"):
step_str = step_str.removeprefix("step")
if step_str.isdigit():
step = int(step_str)
else:
print(f"Warning step name {step_str} is not an integer")
step = step + 1
if log_to_wandb:
wandb.log(
{
"gold/win_rate": win_rate,
"gold/norm_reward": norm_reward,
"train/global_step": step,
}
)
print(f"step {step}: win-rate {win_rate} norm-reward {norm_reward}")
def main_args_dict(args_dict):
parser = HfArgumentParser([GenerateScriptArguments, EvalScriptArguments])
generate_args, eval_args = parser.parse_dict(args_dict)
if eval_args.gold_tokenizer_name is None:
eval_args.gold_tokenizer_name = generate_args.tokenizer_name
print("GENERATING")
reference, generations = generate(generate_args)
# dataset = load_dataset(generate_args.dataset_name, split=generate_args.split)
# generations = {"step0": dataset["query_reference_response"]}
# reference = dataset["query_reference_response"]
print("EVALUATING")
evaluate(eval_args, reference, generations, generate_args.model_name)
if __name__ == "__main__":
parser = HfArgumentParser([GenerateScriptArguments, EvalScriptArguments])
generate_args, eval_args = parser.parse_args_into_dataclasses()
if eval_args.gold_tokenizer_name is None:
eval_args.gold_tokenizer_name = generate_args.tokenizer_name
print("GENERATING")
reference, generations = generate(generate_args)
# dataset = load_dataset(generate_args.dataset_name, split=generate_args.train_split)
# generations = {"step0": dataset["query_reference_response"]}
# reference = dataset["query_reference_response"]
print("EVALUATING")
evaluate(eval_args, reference, generations)
|