File size: 12,079 Bytes
1904ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import gc
import os
from dataclasses import dataclass, field
from typing import List, Optional

import torch
from datasets import Dataset, builder, load_dataset
from huggingface_hub import list_repo_refs
from peft import PeftModelForCausalLM
from scalar_rm_model import ScalarModel, ScalarModelConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments
from vllm import LLM, SamplingParams
from vllm.model_executor.parallel_utils.parallel_state import destroy_model_parallel

import wandb


builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True


@dataclass
class GenerateScriptArguments:
    output_dir: Optional[str] = field(
        default="/home/toolkit/trl_results",
        metadata={"help": "output folder"},
    )
    num_gpus: Optional[int] = field(default=1)
    base_model_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
    base_model_revision: Optional[str] = field(default=None)
    model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
    model_revisions: Optional[List[str]] = field(default_factory=list)
    # base_model_revision: Optional[str] = field(default=None)
    tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
    dataset_name: Optional[str] = field(
        default="arianhosseini/openai_summarize_unlabelled", metadata={"help": "the dataset name"}
    )
    split: Optional[str] = field(default="validation", metadata={"help": "the dataset name"})
    batch_size: Optional[int] = field(default=4)
    seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})

    temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
    top_p: Optional[float] = field(default=1.0, metadata={"help": "Gen temperature"})
    max_new_tokens: Optional[int] = field(default=48, metadata={"help": "max new tokens"})
    gen_dtype: Optional[str] = field(default="auto")


@dataclass
class EvalScriptArguments:
    wandb_log_id: Optional[str] = field(default=None)
    gold_model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
    gold_model_revision: Optional[str] = field(default=None)
    eval_dtype: Optional[str] = field(default="auto")
    eval_batch_size: Optional[int] = field(default=16)
    max_length: Optional[int] = field(default=512)
    gold_tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
    flash_attention: Optional[bool] = field(default=False)


def generate(script_args):
    tokenizer = AutoTokenizer.from_pretrained(script_args.tokenizer_name)
    tokenizer.add_special_tokens({"pad_token": "[PAD]"})
    tokenizer.padding_side = "left"

    dataset = load_dataset(script_args.dataset_name, split=script_args.split)
    prompts = dataset["query"]

    sampling_params = SamplingParams(
        temperature=script_args.temperature,
        max_tokens=script_args.max_new_tokens,
        top_p=script_args.top_p,
        n=1,
        include_stop_str_in_output=True,
        skip_special_tokens=False,
    )

    refs = list_repo_refs(script_args.model_name, repo_type="model")
    gens = {}
    revisions = sorted([branch.name for branch in refs.branches])
    for revision in revisions:
        if revision == "main":
            continue

        if script_args.model_revisions and revision not in script_args.model_revisions:
            continue

        print(f"generating step {revision}")

        if script_args.base_model_name is None:
            # merged model
            model_name = script_args.model_name
            revision_name = revision
        else:
            # peft model that needs to be merged
            base_model = AutoModelForCausalLM.from_pretrained(
                script_args.base_model_name, revision=script_args.base_model_revision
            )
            # merge the model and save
            model = PeftModelForCausalLM.from_pretrained(
                base_model, script_args.model_name, revision=revision, device="cpu"
            )
            merged = model.merge_and_unload()
            model_save_path = f"/home/toolkit/trl_results/{script_args.model_name}_merged/{revision}"
            merged.save_pretrained(model_save_path)
            del model
            del merged
            model_name = model_save_path
            revision_name = revision
            revision = None

        llm = LLM(
            model=model_name,
            revision=revision,
            tokenizer=script_args.tokenizer_name,
            dtype=script_args.gen_dtype,
            max_model_len=script_args.seq_length,
            tensor_parallel_size=script_args.num_gpus,
            trust_remote_code=True,
        )

        llm.set_tokenizer(tokenizer)

        generations = llm.generate(prompts, sampling_params)

        texts = [output.prompt + output.outputs[0].text for output in generations]

        gens[revision_name] = texts

        dataset = dataset.add_column(f"generations_{revision_name}", texts)

        # delete old model
        destroy_model_parallel()
        del llm.llm_engine.driver_worker
        del llm
        gc.collect()
        torch.cuda.empty_cache()
        torch.distributed.destroy_process_group()

    if script_args.output_dir is not None:
        # TODO add hash to dataset path
        # sampling_str = str(sampling_params)
        # sampling_hash = hashlib.sha256(sampling_str.encode()).hexdigest()[:10]
        dataset_path = os.path.join(
            script_args.output_dir,
            script_args.dataset_name.replace("/", "_"),
            script_args.model_name.replace("/", "_"),
        )
        os.makedirs(dataset_path, exist_ok=True)
        dataset.save_to_disk(dataset_path)
        with open(f"{dataset_path}_sampling_params.txt", "w") as f:
            print(sampling_params, file=f)

    print(f"generated {len(gens)} steps")
    reference = dataset["query_reference_response"]

    return reference, gens

    # ds_info = DatasetInfo(
    #     f"{script_args.dataset_name} split {script_args.train_split} prompts used to generate with {script_args.model_name}"
    #     f" temp {script_args.temperature} top_p {script_args.top_p} "
    # )
    # generated_dataset = Dataset.from_generator(dataset_generator, info=ds_info)
    # generated_dataset.push_to_hub(os.path.basename(script_args.output_dir), split="train")


def evaluate(args, reference, generations, model_name=None):
    if args.wandb_log_id is not None:
        # don't overwrite the wandb name of the original run
        if args.wandb_log_id == "model_name":
            # model name = config_wandblogid
            wandb_log_id = model_name.split("_")[-1]
        else:
            wandb_log_id = args.wandb_log_id

        os.environ.pop("WANDB_NAME")
        # original_name = wandb_name.removeprefix("geneval_")
        wandb.init(id=wandb_log_id, resume="allow")
        log_to_wandb = True
        print(f"Logging to WandB {wandb_log_id}")
    else:
        log_to_wandb = False

    torch_dtype = args.eval_dtype if args.eval_dtype in ["auto", None] else getattr(torch, args.eval_dtype)
    tokenizer = AutoTokenizer.from_pretrained(args.gold_tokenizer_name)
    tokenizer.add_special_tokens({"pad_token": "[PAD]"})

    scalar_model_config = ScalarModelConfig.from_pretrained(
        args.gold_model_name,
        revision=args.gold_model_revision,
    )
    # hack to remove the path
    # models/EleutherAI/pythia-6.9b-deduped/sft_model_55513 -> EleutherAI/pythia-6.9b-deduped
    if scalar_model_config.base_model.startswith("models/"):
        original_model = scalar_model_config.base_config["_name_or_path"].split("/")[2]
        sft_model = f"vwxyzjn/EleutherAI_{original_model}__sft__tldr"
        scalar_model_config.base_config["_name_or_path"] = sft_model
        scalar_model_config.base_model = sft_model
        _, seed, _ = args.gold_model_revision.split("__")
        scalar_model_config.base_model_revision = f"sft__{seed}__1708611267"

    # quantization_config = get_quantization_config(model_config)
    model = ScalarModel.from_pretrained(
        args.gold_model_name,
        revision=args.gold_model_revision,
        config=scalar_model_config,
        torch_dtype=torch_dtype,
        use_flash_attention_2=args.flash_attention,
    )

    model.config.pad_token_id = tokenizer.pad_token_id

    training_args = TrainingArguments(per_device_eval_batch_size=int(args.eval_batch_size), output_dir=".")

    trainer = Trainer(
        model=model,
        tokenizer=tokenizer,
        args=training_args,
    )

    def tokenize_and_add_eos(tokenizer, text_column, max_length):
        def fn(example):
            text = example[text_column]
            if not text.endswith(tokenizer.eos_token):
                text += tokenizer.eos_token

            tokenized = tokenizer(
                text,
                padding="max_length",
                max_length=max_length,
                truncation=True,
            )

            # guarantee that last token is EOS if truncated
            token_length = sum(tokenized["attention_mask"])
            if token_length == max_length:
                tokenized["input_ids"][-1] = tokenizer.eos_token_id

            return tokenized

        return fn

    ## get reference continuation rewards
    dataset = Dataset.from_dict({"reference": reference})
    dataset = dataset.map(tokenize_and_add_eos(tokenizer, "reference", args.max_length))

    ref_results = trainer.predict(dataset)
    ref_rewards = ref_results.predictions

    step = 0
    for step_str, query_response in generations.items():
        dataset = Dataset.from_dict({"query_response": query_response})
        dataset = dataset.map(tokenize_and_add_eos(tokenizer, "query_response", args.max_length))

        print(f"Evaluating {step_str}")
        results = trainer.predict(dataset)
        gen_rewards = results.predictions

        win_rate = (gen_rewards > ref_rewards).mean().item()
        norm_reward = (gen_rewards - ref_rewards).mean().item()

        if step_str.startswith("step"):
            step_str = step_str.removeprefix("step")

        if step_str.isdigit():
            step = int(step_str)
        else:
            print(f"Warning step name {step_str} is not an integer")
            step = step + 1

        if log_to_wandb:
            wandb.log(
                {
                    "gold/win_rate": win_rate,
                    "gold/norm_reward": norm_reward,
                    "train/global_step": step,
                }
            )

        print(f"step {step}: win-rate {win_rate} norm-reward {norm_reward}")


def main_args_dict(args_dict):
    parser = HfArgumentParser([GenerateScriptArguments, EvalScriptArguments])
    generate_args, eval_args = parser.parse_dict(args_dict)
    if eval_args.gold_tokenizer_name is None:
        eval_args.gold_tokenizer_name = generate_args.tokenizer_name

    print("GENERATING")
    reference, generations = generate(generate_args)
    # dataset = load_dataset(generate_args.dataset_name, split=generate_args.split)
    # generations = {"step0": dataset["query_reference_response"]}
    # reference = dataset["query_reference_response"]
    print("EVALUATING")
    evaluate(eval_args, reference, generations, generate_args.model_name)


if __name__ == "__main__":
    parser = HfArgumentParser([GenerateScriptArguments, EvalScriptArguments])
    generate_args, eval_args = parser.parse_args_into_dataclasses()
    if eval_args.gold_tokenizer_name is None:
        eval_args.gold_tokenizer_name = generate_args.tokenizer_name

    print("GENERATING")
    reference, generations = generate(generate_args)
    # dataset = load_dataset(generate_args.dataset_name, split=generate_args.train_split)
    # generations = {"step0": dataset["query_reference_response"]}
    # reference = dataset["query_reference_response"]
    print("EVALUATING")
    evaluate(eval_args, reference, generations)