File size: 7,725 Bytes
1904ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import shutil
from dataclasses import dataclass, field
from typing import Optional

import evaluate
import nltk
import torch
from accelerate import Accelerator
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    default_data_collator,
)

import wandb


shutil.disk_usage = lambda x: shutil._ntuple_diskusage(1, 1, 1)


@dataclass
class ScriptArguments:
    model_name: Optional[str] = field(default="EleutherAI/pythia-6.9b-deduped", metadata={"help": "the model name"})
    tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
    dataset_name: Optional[str] = field(
        default="CarperAI/openai_summarize_tldr", metadata={"help": "the dataset name"}
    )
    split: Optional[str] = field(default="valid[:20]", metadata={"help": "the dataset name"})
    dataset_text_field: Optional[str] = field(default="prompt")
    dataset_label_field: Optional[str] = field(default="label")
    load_in_8bit: Optional[bool] = field(default=True, metadata={"help": "load the model in 8 bits precision"})
    load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
    use_peft: Optional[bool] = field(default=True, metadata={"help": "Wether to use PEFT or not to train adapters"})
    seed: Optional[int] = field(default=0)
    batch_size: Optional[int] = field(default=1)
    bf16: Optional[bool] = field(default=False)
    fp16: Optional[bool] = field(default=False)
    seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
    max_new_tokens: Optional[int] = field(default=48, metadata={"help": "Max new tokens to generate"})
    num_logged_samples: int = field(default=100, metadata={"help": "Max samples to log to wandb"})
    temperature: Optional[float] = field(default=0.0)
    sample: Optional[bool] = field(default=False)

    strip: Optional[bool] = field(default=False)
    log_with: Optional[str] = field(default="wandb")


parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]

print("Loading the model")
if args.load_in_8bit and args.load_in_4bit:
    raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif args.load_in_8bit or args.load_in_4bit:
    quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit)
    device_map = {"": Accelerator().local_process_index}
else:
    device_map = None
    quantization_config = None

model = AutoModelForCausalLM.from_pretrained(
    args.model_name,
    torch_dtype=torch.bfloat16 if args.bf16 else None,
)

print("Loading dataset")
tokenizer = AutoTokenizer.from_pretrained(
    args.model_name if args.tokenizer_name is None else args.tokenizer_name, padding_side="left"
)
if getattr(tokenizer, "pad_token", None) is None:
    tokenizer.pad_token = tokenizer.eos_token


def create_dataset(tokenizer, args):
    eval_data = load_dataset(
        args.dataset_name,
        split=args.split,
    )

    padding = "max_length"
    max_source_length = args.seq_length
    max_target_length = 52

    def preprocess_function(example):
        inputs = example[args.dataset_text_field]
        targets = example[args.dataset_label_field]

        if args.strip:
            inputs = inputs.strip()
            targets = targets.strip()

        model_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True)

        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    eval_dataset = eval_data.map(
        preprocess_function,
        remove_columns=eval_data.column_names,
    )

    return eval_dataset


eval_dataset = create_dataset(tokenizer, args)

rouge = evaluate.load("rouge")


def postprocess_text(preds, labels):
    preds = [pred.strip() for pred in preds]
    labels = [label.strip() for label in labels]

    # rougeLSum expects newline after each sentence
    preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
    labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

    return preds, labels


accelerator = Accelerator()
eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=args.batch_size)

model, eval_dataloader = accelerator.prepare(model, eval_dataloader)

model.eval()

gen_kwargs = {
    "max_new_tokens": args.max_new_tokens,
    "pad_token_id": tokenizer.pad_token_id,
    "eos_token_id": tokenizer.eos_token_id,
    "do_sample": args.sample,
}

wandb.init(project="trl")
table = wandb.Table(columns=["prompt", "prediction", "label"])

for batch in tqdm(eval_dataloader):
    with torch.no_grad():
        output_tokens = accelerator.unwrap_model(model).generate(
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
            **gen_kwargs,
        )

    # get just the generated tokens
    generated_tokens = output_tokens[:, batch["input_ids"].shape[1] :]

    generated_tokens = accelerator.pad_across_processes(generated_tokens, dim=1, pad_index=tokenizer.pad_token_id)
    labels = batch["labels"]
    # if not args.pad_to_max_length:
    #     # If we did not pad to max length, we need to pad the labels too
    #     labels = accelerator.pad_across_processes(batch["labels"], dim=1, pad_index=tokenizer.pad_token_id)

    generated_tokens, labels = accelerator.gather_for_metrics((generated_tokens, labels))
    generated_tokens = generated_tokens.cpu().numpy()
    labels = labels.cpu().numpy()

    # if args.ignore_pad_token_for_loss:
    #     # Replace -100 in the labels as we can't decode them.
    #     labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    if isinstance(generated_tokens, tuple):
        generated_tokens = generated_tokens[0]
    decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

    # print(f"Label {decoded_labels}")
    # print(f"Pred {decoded_preds}")

    rouge.add_batch(
        predictions=decoded_preds,
        references=decoded_labels,
    )

    # log samples
    if accelerator.is_main_process:
        if len(table.data) < args.num_logged_samples:
            num_samples_to_add = min(args.num_logged_samples - len(table.data), len(batch["input_ids"]))
            for i in range(num_samples_to_add):
                table.add_data(
                    tokenizer.decode(batch["input_ids"][i], skip_special_tokens=True),
                    decoded_preds[i],
                    decoded_labels[i],
                )

            if len(table.data) == args.num_logged_samples:
                if args.log_with == "wandb":
                    wandb.log({"examples": table})
                else:
                    for row in table.iterrows():
                        print("PROMPT")
                        print(row[1][0])
                        print("\n")
                        print("PRED")
                        print(row[1][1])
                        print("\n")
                        print("LABEL")
                        print(row[1][2])
                        print("\n")
                        print("\n")

result = rouge.compute()
print(result)

for key, value in result.items():
    wandb.run.summary[key] = value